BACKGROUND: Giardiasis, caused by the protozoan parasite Giardia intestinalis, often presents a treatment challenge, particularly in terms of resistance to metronidazole. Despite extensive research, markers for metronidazole resistance have not yet been identified. METHODS: This study analysed 28 clinical samples of G. intestinalis from sub-assemblage AII, characterised by varying responses to metronidazole treatment. We focussed on copy number variation (CNV) of the multi-copy flavohemoprotein gene, analysed using digital polymerase chain reaction (dPCR) and next generation sequencing (NGS). Additionally, chromosomal ploidy was tested in 18 of these samples. Flavohemoprotein CNV was also assessed in 17 samples from other sub-assemblages. RESULTS: Analyses revealed variable CNVs of the flavohemoprotein gene among the isolates, with no correlation to clinical metronidazole resistance. Discrepancies in CNVs detected from NGS data were attributed to biases linked to the whole genome amplification. However, dPCR helped to clarify these discrepancies by providing more consistent CNV data. Significant differences in flavohemoprotein CNVs were observed across different G. intestinalis sub-assemblages. Notably, Giardia exhibits a propensity for aneuploidy, contributing to genomic variability within and between sub-assemblages. CONCLUSIONS: The complexity of the clinical metronidazole resistance in Giardia is influenced by multiple genetic factors, including CNVs and aneuploidy. No significant differences in the CNV of the flavohemoprotein gene between isolates from metronidazole-resistant and metronidazole-sensitive cases of giardiasis were found, underscoring the need for further research to identify reliable genetic markers for resistance. We demonstrate that dPCR and NGS are robust methods for analysing CNVs and provide cross-validating results, highlighting their utility in the genetic analyses of this parasite.
- Klíčová slova
- Giardia intestinalis, Aneuploidy, Chromosomes, Copy number variation, Digital PCR, Flavohemoglobin, Flavohemoprotein, Metronidazole,
- MeSH
- antiprotozoální látky * farmakologie MeSH
- Giardia lamblia * genetika účinky léků MeSH
- giardiáza * parazitologie farmakoterapie MeSH
- léková rezistence * genetika MeSH
- lidé MeSH
- metronidazol * farmakologie MeSH
- protozoální proteiny genetika MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiprotozoální látky * MeSH
- metronidazol * MeSH
- protozoální proteiny MeSH
BACKGROUND: The flagellated parasite Giardia duodenalis is a major and global cause of diarrhoeal disease. Eight genetically very distinct groups, known as assemblages A to H, have been recognized in the G. duodenalis species complex, two of which (assemblages A and B) infect humans and other mammalian hosts. Informative typing schemes are essential to understand transmission pathways, characterize outbreaks and trace zoonotic transmission. In this study, we evaluated a published multi-locus sequence typing (MLST) scheme for G. duodenalis assemblage A, which is based on six polymorphic markers. METHODS: We genotyped 60 human-derived and 11 animal-derived G. duodenalis isolates collected in Europe and on other continents based on the published protocol. After retrieving previously published genotyping data and excluding isolates whose sequences showed allelic sequence heterozygosity, we analysed a dataset comprising 146 isolates. RESULTS: We identified novel variants at five of the six markers and identified 78 distinct MLST types in the overall dataset. Phylogenetic interpretation of typing data confirmed that sub-assemblage AII only comprises human-derived isolates, whereas sub-assemblage AI comprises all animal-derived isolates and a few human-derived isolates, suggesting limited zoonotic transmission. Within sub-assemblage AII, isolates from two outbreaks, which occurred in Sweden and Italy, respectively, had unique and distinct MLST types. Population genetic analysis showed a lack of clustering by geographical origin of the isolates. CONCLUSION: The MLST scheme evaluated provides sufficient discriminatory power for epidemiological studies of G. duodenalis assemblage A.
- Klíčová slova
- MLST, Molecular epidemiology, Outbreak, Source tracing, Zoonotic transmission,
- MeSH
- feces parazitologie MeSH
- fylogeneze MeSH
- genotyp MeSH
- Giardia lamblia * MeSH
- giardiáza * parazitologie MeSH
- lidé MeSH
- multilokusová sekvenční typizace MeSH
- savci genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
- MeSH
- aktiny metabolismus MeSH
- Giardia lamblia * genetika metabolismus MeSH
- Giardia metabolismus MeSH
- giardiáza * parazitologie MeSH
- paraziti * metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- aktiny MeSH
- protozoální proteiny MeSH
To understand general features in evolution of kinetochore organization, investigating a wide range of mitotic mechanisms in various non-model eukaryotes is necessary. A binucleate flagellate Giardia intestinalis is a representative of highly divergent eukaryotic lineage of Metamonads. FIB/SEM tomography was used to investigate ultrastructural details of its mitotic architecture, including kinetochores. Giardia undergoes semi-open mitosis, with the nuclear envelope remaining intact except for polar fenestrae, allowing microtubules to enter the nucleoplasm. At the onset of mitosis, the nuclear envelope bends inward, forming a concave depression at the spindle poles. Spindle microtubules emanate from a cytoplasmic fuzzy microtubule organizing center near the flagellar basal bodies. Kinetochoral microtubules enter the nucleoplasm and bind to kinetochores. A small bipartite kinetochore composed of a dense inner disk, approximately 46 nm in diameter, and a two-armed outer fork, is attached to just one microtubule. To our knowledge, this is the first in situ evidence of a one-microtubule attachment to a kinetochore, which could represent a basic eukaryotic situation.
- Klíčová slova
- FIB/SEM, Giardia, Kinetochore, Mitosis, Nuclear envelope, Spindle apparatus,
- MeSH
- aparát dělícího vřeténka metabolismus MeSH
- Giardia lamblia * MeSH
- kinetochory * MeSH
- mikrotubuly metabolismus MeSH
- mitóza MeSH
- Publikační typ
- časopisecké články MeSH
CRISPR/Cas9-mediated genome editing has become an extremely powerful technique used to modify gene expression in many organisms, including parasitic protists. Giardia intestinalis, a protist parasite that infects approximately 280 million people around the world each year, has been eluding the use of CRISPR/Cas9 to generate knockout cell lines due to its tetraploid genome. In this work, we show the ability of the in vitro assembled CRISPR/Cas9 components to successfully edit the genome of G. intestinalis. The cell line that stably expresses Cas9 in both nuclei of G. intestinalis showed effective recombination of the cassette containing the transcription units for the gRNA and the resistance marker. This highly efficient process led to the removal of all gene copies at once for three independent experimental genes, mem, cwp1 and mlf1. The method was also applicable to incomplete disruption of the essential gene, as evidenced by significantly reduced expression of tom40. Finally, testing the efficiency of Cas9-induced recombination revealed that homologous arms as short as 150 bp can be sufficient to establish a complete knockout cell line in G. intestinalis.
- Klíčová slova
- CRISPR/Cas9, Giardia, gene knockout, multiploid,
- MeSH
- CRISPR-Cas systémy * MeSH
- editace genu metody MeSH
- Giardia lamblia * genetika MeSH
- lidé MeSH
- tetraploidie MeSH
- vodící RNA, systémy CRISPR-Cas MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vodící RNA, systémy CRISPR-Cas MeSH
BACKGROUND: The presence of mitochondria is a distinguishing feature between prokaryotic and eukaryotic cells. It is currently accepted that the evolutionary origin of mitochondria coincided with the formation of eukaryotes and from that point control of mitochondrial inheritance was required. Yet, the way the mitochondrial presence has been maintained throughout the eukaryotic cell cycle remains a matter of study. Eukaryotes control mitochondrial inheritance mainly due to the presence of the genetic component; still only little is known about the segregation of mitochondria to daughter cells during cell division. Additionally, anaerobic eukaryotic microbes evolved a variety of genomeless mitochondria-related organelles (MROs), which could be theoretically assembled de novo, providing a distinct mechanistic basis for maintenance of stable mitochondrial numbers. Here, we approach this problem by studying the structure and inheritance of the protist Giardia intestinalis MROs known as mitosomes. RESULTS: We combined 2D stimulated emission depletion (STED) microscopy and focused ion beam scanning electron microscopy (FIB/SEM) to show that mitosomes exhibit internal segmentation and conserved asymmetric structure. From a total of about forty mitosomes, a small, privileged population is harnessed to the flagellar apparatus, and their life cycle is coordinated with the maturation cycle of G. intestinalis flagella. The orchestration of mitosomal inheritance with the flagellar maturation cycle is mediated by a microtubular connecting fiber, which physically links the privileged mitosomes to both axonemes of the oldest flagella pair and guarantees faithful segregation of the mitosomes into the daughter cells. CONCLUSION: Inheritance of privileged Giardia mitosomes is coupled to the flagellar maturation cycle. We propose that the flagellar system controls segregation of mitochondrial organelles also in other members of this supergroup (Metamonada) of eukaryotes and perhaps reflects the original strategy of early eukaryotic cells to maintain this key organelle before mitochondrial fusion-fission dynamics cycle as observed in Metazoa was established.
- Klíčová slova
- Cell cycle, Cytoskeleton, Flagellum, Giardia, Mitochondrial division, Mitochondrial inheritance, Mitosomes, Protist, mitochondrial evolution,
- MeSH
- databáze genetické MeSH
- Giardia lamblia * genetika MeSH
- mitochondriální dynamika MeSH
- mitochondrie genetika MeSH
- organely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Giardia intestinalis is a common enteric single-celled parasite infecting both humans and animals. Its eight morphologically identical but genetically distinct groups called assemblages differ from each other in host range. While assemblages A and B infect a wide range of hosts, including humans, the other assemblages (C to H) limit their host preferences to particular animal groups only. In companion animals as Giardia hosts, genotyping data have previously shown various results depending on pet species, location, environmental or breeding conditions, and the study design. To strengthen available epidemiological data from developed countries and to evaluate the role of pets in Giardia zoonotic transmission, we investigated Giardia-positive stool samples of three pet species (54 dogs, 18 cats, and 18 chinchillas) by a sequence-based analysis of three Giardia genes (β-giardin, glutamate dehydrogenase and triose phosphate isomerase). In dog samples, we confirmed assemblage C (21/54), assemblage D (32/54), and one case of a mixed infection C + D (1/54). In cats, we found assemblage F (16/18) and assemblage A, specifically sub-assemblage AI (2/18). All Giardia samples from chinchillas were characterised as assemblage B, specifically sub-assemblage BIV (18/18). These results indicate that in the Czech Republic, pet dogs may not represent a source of Giardia infection for humans because of the presence of only canid-specific genotypes C and D. In contrast, other pets, namely, chinchillas and, to a lesser extent, cats, may pose a potential risk of Giardia transmission to owners or breeders because they can host zoonotic Giardia genotypes.
- Klíčová slova
- Cat, Chinchilla, Czech Republic, Dog, Genotyping, Giardia intestinalis,
- MeSH
- činčila * MeSH
- genotyp MeSH
- Giardia lamblia genetika izolace a purifikace MeSH
- giardiáza epidemiologie parazitologie přenos veterinární MeSH
- kočky MeSH
- lidé MeSH
- nemoci hlodavců epidemiologie parazitologie přenos MeSH
- nemoci koček epidemiologie parazitologie přenos MeSH
- nemoci psů epidemiologie parazitologie přenos MeSH
- pilotní projekty MeSH
- prevalence MeSH
- protozoální geny MeSH
- psi MeSH
- zoonózy epidemiologie parazitologie přenos MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- lidé MeSH
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
The limited availability of biological samples hinders phylogenetic efforts to define structural differences among various biological groups. A novel workflow enabling the analysis of protists in low cell numbers by electron microscopy (EM) is described with cysts of Giardia intestinalis, a single-celled eukaryotic parasite. Correlative light and electron microscopy (CLEM) allows for the selection of individual cells and is economical in terms of time and cost. We describe a cyst purification protocol in combination with an adhesive coating for fixation and ultrathin embedding that results in excellent preservation of cell morphology. The application of advanced structural and analytical EM methods, such as high-resolution field emission scanning electron microscopy (FESEM), focused ion beam tomography (FIB/SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis, is demonstrated. The workflow represents a new approach for studying the cellular and organelle architecture of rare and "difficult to culture" microorganisms.
- Klíčová slova
- CLEM, Cyst, EDX, Eukaryotic microorganisms, FESEM, FIB/SEM, Giardia,
- MeSH
- elektronová mikroskopie metody MeSH
- Eukaryota klasifikace izolace a purifikace ultrastruktura MeSH
- fylogeneze MeSH
- mikroskopie elektronová rastrovací metody MeSH
- mikroskopie metody MeSH
- průběh práce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The single-celled parasite Giardia intestinalis (Diplomonadida) has two equally sized nuclei in one cell. The nuclei have been considered identical. We have previously shown that they contain different chromosomal sets and proceed through the cell cycle with some asynchrony. Here, we demonstrate by fluorescence in situ hybridization that several genes from chromosome 5 are lost in one of the two nuclei of the WBc6 Giardia line. The missing segment stretches over at least 50 kb near the 5' chromosome end. In both WB and WBc6 Giardia cell lines, chromosome 5 is trisomic in one nucleus and monosomic in the other nucleus. The described chromosomal deletion has always been observed at the monosomic chromosome in WBc6; however, the deletion was not detected in the parent line WB. The chromosomal segment was thus initially lost after biological cloning of WB, which gave rise to clone WBc6. We show that Giardia is capable of carrying out gene expression from only one nucleus. The two nuclei display a certain level of diversity, making each of them irreplaceable. The doubled karyomastigonts of diplomonads likely have separate functions both in the mastigont/flagellar organization and in chromosomal and gene content. To our knowledge, our results offer the first methodical approach to differentiating the two, so far indistinguishable nuclei.
- Klíčová slova
- Deletion, Diplomonadida, Gene content, Gene expression, Giardia intestinalis, Karyotype, Nuclei,
- MeSH
- buněčné jádro genetika MeSH
- časové faktory MeSH
- chromozomální delece MeSH
- delece genu MeSH
- Giardia lamblia genetika ultrastruktura MeSH
- hybridizace in situ fluorescenční normy MeSH
- komplementární DNA genetika MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- mitóza MeSH
- monozomie * genetika MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- regulace genové exprese fyziologie MeSH
- reverzní transkripce MeSH
- RNA protozoální genetika izolace a purifikace MeSH
- signální transdukce MeSH
- trizomie * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplementární DNA MeSH
- RNA protozoální MeSH
The level of genetic variability of Giardia intestinalis clinical isolates is an intensively studied and discussed issue within the scientific community. Our collection of G. intestinalis human isolates includes six in vitro-cultured isolates from assemblage B, with extensive genetic variability. Such variability prevents the precise genotype characterisation by the multi-locus genotyping (MLG) method commonly used for assemblage A. It was speculated that the intra-assemblage variations represent a reciprocal genetic exchange or true mixed infection. Thus, we analysed gene sequences of the molecular clones of the assemblage B isolates, each representing a single DNA molecule (haplotype) to determine whether the polymorphisms are present within individual haplotypes. Our results, which are based on the analysis of three standard genetic markers (bg, gdh, tpi), point to haplotype diversity and show numerous single nucleotide polymorphisms (SNPs) mostly in codon wobble positions. We do not support the recombinatory origin of the detected haplotypes. The point mutations tolerated by mismatch repair are the possible cause for the detected sequence divergence. The precise sub-genotyping of assemblage B will require finding more conservative genes, as the existing ones are hypervariable in most isolates and prevent their molecular and epidemiological characterisation.
- Klíčová slova
- Assemblage B, Genetic variability, Giardia intestinalis, Haplotypes, Molecular cloning,
- MeSH
- feces parazitologie MeSH
- fylogeneze MeSH
- genotyp MeSH
- Giardia lamblia klasifikace genetika izolace a purifikace MeSH
- giardiáza parazitologie MeSH
- haplotypy MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- protozoální DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální DNA MeSH