epithelial to mesenchymal transition
Dotaz
Zobrazit nápovědu
OBJECTIVE: During reproductive age of a woman, endometrium undergoes frequent stuctural and functional changes. Abilities of regeneration, remodelation and differentiation are precondition of endometrial receptivity and implantation and development of an embryo. These processes are conditioned by mutual transformation between mesenchymal and epithelial fenotype of endometrial cells: epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). The aim of this study is to present contemporary knowledge of transformation between epithelial and mesenchymal endometrial cells and its influence on human fertility. DESIGN: Review article. SETTING: Department of Obstetrics and Gynecology, Faculty of Medicine, Masaryk university and University Hospital Brno; Department of Obstetrics and Gynecology, University Hospital Faculty of Medicine, Palacky University, Olomouc. METHODS: PubMed was searched for articles in English indexed until February 2019 with terms of „endometrial receptivity“, „embryo implantation“, „endometrial regeneration“, „mesenchymal-epithelial transition/transformation“. RESULTS: It has been proved, that mesenchymal stromal cells participate on regeneration of not only the endometrial stroma, but also of the epithelium. During endometrial decidualisation under influence of ovarian steroids, the MET is under way. Stromal fibroblasts gain the morfological and functional properties of epithelial cells. During implantaion of an embryo, the trofoblast interacts with decidualised endometrium. Epithelial cells transform into mesenchymal (EMT), which mediate the growth of trofoblast. CONCLUSION: Mutual transformation between stromal and epithelial cells in essential for normal function of endometrium and implantation and development of an embryo.
- Klíčová slova
- embryo implantation, endometrial receptivity, endometrial regeneration, endometrium, mesenchymalepithelial transition,
- MeSH
- endometrium fyziologie MeSH
- epitelo-mezenchymální tranzice * MeSH
- fertilita MeSH
- implantace embrya * MeSH
- lidé MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
SIGNIFICANCE: Machine learning is increasingly being applied to the classification of microscopic data. In order to detect some complex and dynamic cellular processes, time-resolved live-cell imaging might be necessary. Incorporating the temporal information into the classification process may allow for a better and more specific classification. AIM: We propose a methodology for cell classification based on the time-lapse quantitative phase images (QPIs) gained by digital holographic microscopy (DHM) with the goal of increasing performance of classification of dynamic cellular processes. APPROACH: The methodology was demonstrated by studying epithelial-mesenchymal transition (EMT) which entails major and distinct time-dependent morphological changes. The time-lapse QPIs of EMT were obtained over a 48-h period and specific novel features representing the dynamic cell behavior were extracted. The two distinct end-state phenotypes were classified by several supervised machine learning algorithms and the results were compared with the classification performed on single-time-point images. RESULTS: In comparison to the single-time-point approach, our data suggest the incorporation of temporal information into the classification of cell phenotypes during EMT improves performance by nearly 9% in terms of accuracy, and further indicate the potential of DHM to monitor cellular morphological changes. CONCLUSIONS: Proposed approach based on the time-lapse images gained by DHM could improve the monitoring of live cell behavior in an automated fashion and could be further developed into a tool for high-throughput automated analysis of unique cell behavior.
- Klíčová slova
- digital holographic microscopy, epithelial–mesenchymal transition, quantitative phase imaging, supervised machine learning,
- MeSH
- algoritmy MeSH
- časosběrné zobrazování MeSH
- epitelo-mezenchymální tranzice * MeSH
- holografie * MeSH
- strojové učení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Several factors have been evaluated for their competency as applied bio-markers regarding dia-gnosis and therapy of ovarian cancer as one of the most cause of death due to the gynecologic malignancies. However, some Fox-factors have been shown to modulate cancer progression primarily by their impacts on the proliferation of the cells, the expression and potential function of FOXR2 (Forkhead Box R2), newly identified as a probable oncogene in a few human cancers, remains undecided in ovarian cancer. The aim of this study was to evaluate the FOXR2 and some epithelial-mesenchymal transition (EMT) -related gene expression profiles in epithelial ovarian cancer (EOC) tissues and their healthy samples as well as an ovarian cancer cell line (SKOV-3). METHODS: In this observational study, 20 epithelial ovarian adenocarcinoma and their marginal samples, obtained from 20 women with EOC, as well as SKOV-3, were investigated for the relative gene expression levels of FOXR2, CDH1 (encoding E-cadherin) and FN1 (encoding fibronectin-1) in 2 groups using qualitative real-time polymerase chain reaction technique (qRT-PCR). RESULTS: The findings demonstrated a significant up-regulation of FOXR2 and FN1 despite the CDH1 down-regulation in case samples compared to controls (P < 0.05). There was a significant correlation between FOXR2 gene expression profile and EMT-related markers in high-grade tumors. Furthermore, the bio-marker index of 0.772 was obtained for FOXR2 gene expression levels. CONCLUSIONS: The findings indicated that the expression levels of FOXR2 have a significant association with ovarian cancer as far as it can be used as a dia-gnostic and therapeutic molecular bio-marker in ovarian cancer.
- Klíčová slova
- FOXR2, epithelial-mesenchymal transition, gene expression, ovarian cancer,
- MeSH
- dospělí MeSH
- epiteliální ovariální karcinom patologie MeSH
- epitelo-mezenchymální tranzice fyziologie MeSH
- forkhead transkripční faktory biosyntéza MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nádory vaječníků patologie MeSH
- transkriptom MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- forkhead transkripční faktory MeSH
- FOXR2 protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
Chemoresistance has been found in all malignant tumors including colorectal carcinoma (CRC). Nowadays chemoresistance is understood as a major reason for therapy failure, with consequent tumor growth and spreading leading ultimately to the patient's premature death. The chemotherapy-related resistance of malignant colonocytes may be manifested in diverse mechanisms that may exist both prior to the onset of the therapy or after it. The ultimate function of this chemoresistance is to ensure the survival of malignant cells through continuing adaptation within an organism, therefore, the nature and spectrum of cell-survival strategies in CRC represent a highly significant target of scientific inquiry. Among these survival strategies employed by CRC cells, three unique but significantly linked phenomena stand out-epithelial-to-mesenchymal transition (EMT), autophagy, and cell death. In this mini-review, current knowledge concerning all three mechanisms including their emergence, timeline, regulation, and mutual relationships will be presented and discussed.
- Klíčová slova
- apoptosis, autophagy, chemoresistance, colorectal carcinoma (CRC), epithelial-to-mesenchymal transition (EMT),
- MeSH
- apoptóza * MeSH
- autofagie * MeSH
- chemorezistence * MeSH
- epitelo-mezenchymální tranzice * MeSH
- fenotyp MeSH
- kolorektální nádory patologie MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Hematopoietic stem cells derived from pluripotent stem cells could be used as an alternative to bone marrow transplants. Deriving these has been a long-term goal for researchers. However, the success of these efforts has been limited with the cells produced able to engraft in the bone marrow of recipient animals only in very low numbers. There is evidence that defects in the migratory and homing capacity of the cells are due to mis-regulation of miRNA expression and are responsible for their failure to engraft. We compared the miRNA expression profile of hematopoietic progenitors derived from pluripotent stem cells to those derived from bone marrow and found that numerous miRNAs are too highly expressed in hematopoietic progenitors derived from pluripotent stem cells, and that most of these are inhibitors of epithelial-mesenchymal transition or metastasis (including miR-200b, miR-200c, miR-205, miR-148a, and miR-424). We hypothesize that the high expression of these factors, which promote an adherent phenotype, may be causing the defect in hematopoietic differentiation. However, inhibiting these miRNAs, individually or in multiplex, was insufficient to improve hematopoietic differentiation in vitro, suggesting that other miRNAs and/or genes may be involved in this process. Stem Cells 2018;36:55-64.
- Klíčová slova
- Epithelial-mesenchymal transition, Hematopoietic differentiation, Human embryonic stem cells, miRNAs,
- MeSH
- buněčná diferenciace MeSH
- down regulace MeSH
- epitelo-mezenchymální tranzice genetika MeSH
- hematopoetické kmenové buňky metabolismus MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- pluripotentní kmenové buňky metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
BACKGROUND: Lipopolysaccharide (LPS)-induced inflammation of lung tissues triggers irreversible alterations in the lung parenchyma, leading to fibrosis and pulmonary dysfunction. While the molecular and cellular responses of immune and connective tissue cells in the lungs are well characterized, the specific epithelial response remains unclear due to the lack of representative cell models. Recently, we introduced human embryonic stem cell-derived expandable lung epithelial (ELEP) cells as a novel model for studying lung injury and regeneration. METHODS: ELEPs were derived from the CCTL 14 human embryonic stem cell line through activin A-mediated endoderm specification, followed by further induction toward pulmonary epithelium using FGF2 and EGF. ELEPs exhibit a high proliferation rate and express key structural and molecular markers of alveolar progenitors, such as NKX2-1. The effects of Escherichia coli LPS serotype O55:B5 on the phenotype and molecular signaling of ELEPs were analyzed using viability and migration assays, mRNA and protein levels were determined by qRT-PCR, western blotting, and immunofluorescent microscopy. RESULTS: We demonstrated that purified LPS induces features of a hybrid epithelial-to-mesenchymal transition in pluripotent stem cell-derived ELEPs, triggers the unfolded protein response, and upregulates intracellular β-catenin level through retention of E-cadherin within the endoplasmic reticulum. CONCLUSIONS: Human embryonic stem cell-derived ELEPs provide a biologically relevant, non-cancerous lung cell model to investigate molecular responses to inflammatory stimuli and address epithelial plasticity. This approach offers novel insights into the fine molecular processes underlying lung injury and repair.
- Klíčová slova
- Epithelial-to-mesenchymal transition, Expandable lung epithelium, Lipopolysaccharide, Unfolded protein response,
- MeSH
- buněčné linie MeSH
- CD antigeny metabolismus MeSH
- endoplazmatické retikulum * metabolismus účinky léků MeSH
- epitelo-mezenchymální tranzice * účinky léků MeSH
- epitelové buňky * účinky léků metabolismus cytologie MeSH
- kadheriny * metabolismus MeSH
- lidé MeSH
- lidské embryonální kmenové buňky * cytologie MeSH
- lipopolysacharidy * farmakologie MeSH
- plíce * cytologie MeSH
- tyreoidální jaderný faktor 1 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CD antigeny MeSH
- CDH1 protein, human MeSH Prohlížeč
- kadheriny * MeSH
- lipopolysacharidy * MeSH
- NKX2-1 protein, human MeSH Prohlížeč
- tyreoidální jaderný faktor 1 MeSH
The cell surface glycoprotein Trop-2 is commonly overexpressed in carcinomas and represents an exceptional antigen for targeted therapy. Here, we provide evidence that surface Trop-2 expression is functionally connected with an epithelial phenotype in breast and prostate cell lines and in patient tumor samples. We further show that Trop-2 expression is suppressed epigenetically or through the action of epithelial-to-mesenchymal transition transcription factors and that deregulation of Trop-2 expression is linked with cancer progression and poor patient prognosis. Moreover, our data suggest that the cancer plasticity-driven intratumoral heterogeneity in Trop-2 expression may significantly contribute to response and resistance to therapies targeting Trop-2-expressing cells.
- MeSH
- antigeny nádorové genetika metabolismus MeSH
- CD antigeny biosyntéza MeSH
- epitelo-mezenchymální tranzice fyziologie MeSH
- epitelové buňky metabolismus MeSH
- kadheriny biosyntéza MeSH
- karcinom patologie MeSH
- lidé MeSH
- metylace DNA genetika MeSH
- molekuly buněčné adheze genetika metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prostaty mortalita patologie MeSH
- nádory prsu mortalita patologie MeSH
- progrese nemoci MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny nádorové MeSH
- CD antigeny MeSH
- CDH1 protein, human MeSH Prohlížeč
- kadheriny MeSH
- molekuly buněčné adheze MeSH
- TACSTD2 protein, human MeSH Prohlížeč
BACKGROUND: Triple-negative breast carcinomas (TNBC) are a heterogeneous group of tumors with mostly aggressive behaviour and poor prognosis. In association with their aggressive behavior and chemoresistance to treatment, the concept of epithelial-mesenchymal transition (EMT) has come to the fore. CD9 and CD29 proteins are associated with EMT and may play a role in TNBC progression. Our aim was to investigate association of these markers with the lymph node metastasis, tumor grade, proliferative activity, and patient survival. PATIENTS AND METHODS: Our cohort consisted of 66 TNBC patients without neoadjuvant therapy, aged 26-81 years. The pathological tumor stages ranged from pT1b to pT3 and histological grades ranged from II to III, according to the Bloom-Richardson system. Immunohistochemical evaluation of CD9, CD29, E-cadherin, vimentin, androgen receptor and Ki-67 expression was performed semiquantitatively using the H-score. Expression of the proteins was statistically evaluated in relation to the clinicopathological parameters and survival of the patients. RESULTS: We observed lower expression of CD9 in lymph node metastases compared to the primary tumor (P = 0.021). The CD29 expression in primary tumor was significantly lower in patients with lymph node metastases compared to patients without cancer dissemination (P = 0.03). Neither CD9 nor CD29 protein expression was associated with breast cancer-specific survival (BCSS). Lower expression of E-cadherin at the periphery of the primary tumor was associated with worse BCSS (P = 0.038). Neither grade nor the presence of lymph node metastases reached significant association with the BCSS. Lower expression of E-cadherin at the periphery was also associated with higher Ki67 (Rs -0.26) and vimentin (Rs -0.33). CONCLUSION: Decreased protein expression of CD9 and CD29 were associated with lymph node metastasis growth, however, their association with survival was not proved. Lower expression of E-cadherin at the periphery of the primary tumor was associated with high proliferation and poor breast cancer-specific survival.
- Klíčová slova
- CD29, CD9, E-cadherin, epithelial-mesenchymal transition, triple-negative breast cancer,
- MeSH
- antigeny CD9 * metabolismus MeSH
- dospělí MeSH
- epitelo-mezenchymální tranzice * MeSH
- imunohistochemie MeSH
- kadheriny metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lymfatické metastázy * MeSH
- nádorové biomarkery * metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- triple-negativní karcinom prsu * patologie metabolismus mortalita MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD9 * MeSH
- CD9 protein, human MeSH Prohlížeč
- Itgb1 protein, human MeSH Prohlížeč
- kadheriny MeSH
- nádorové biomarkery * MeSH
Cystic fibrosis (CF) is a monogenetic disease resulting from mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene encoding an anion channel. Recent evidence indicates that CFTR plays a role in other cellular processes, namely in development, cellular differentiation and wound healing. Accordingly, CFTR has been proposed to function as a tumour suppressor in a wide range of cancers. Along these lines, CF was recently suggested to be associated with epithelial-mesenchymal transition (EMT), a latent developmental process, which can be re-activated in fibrosis and cancer. However, it is unknown whether EMT is indeed active in CF and if EMT is triggered by dysfunctional CFTR itself or a consequence of secondary complications of CF. In this study, we investigated the occurrence of EMT in airways native tissue, primary cells and cell lines expressing mutant CFTR through the expression of epithelial and mesenchymal markers as well as EMT-associated transcription factors. Transepithelial electrical resistance, proliferation and regeneration rates, and cell resistance to TGF-β1induced EMT were also measured. CF tissues/cells expressing mutant CFTR displayed several signs of active EMT, namely: destructured epithelial proteins, defective cell junctions, increased levels of mesenchymal markers and EMT-associated transcription factors, hyper-proliferation and impaired wound healing. Importantly, we found evidence that the mutant CFTR triggered EMT was mediated by EMT-associated transcription factor TWIST1. Further, our data show that CF cells are over-sensitive to EMT but the CF EMT phenotype can be reversed by CFTR modulator drugs. Altogether, these results identify for the first time that EMT is intrinsically triggered by the absence of functional CFTR through a TWIST1 dependent mechanism and indicate that CFTR plays a direct role in EMT protection. This mechanistic link is a plausible explanation for the high incidence of fibrosis and cancer in CF, as well as for the role of CFTR as tumour suppressor protein.
- MeSH
- cystická fibróza metabolismus patologie MeSH
- epitelo-mezenchymální tranzice MeSH
- HEK293 buňky MeSH
- jaderné proteiny metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- onkogeny genetika MeSH
- protein CFTR metabolismus MeSH
- transkripční faktor Twist metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CFTR protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- protein CFTR MeSH
- transkripční faktor Twist MeSH
- TWIST1 protein, human MeSH Prohlížeč
Preterm, prelabor rupture of the human fetal membranes (pPROM) is involved in 40% of spontaneous preterm births worldwide. Cellular-level disturbances and inflammation are effectors of membrane degradation, weakening, and rupture. Maternal risk factors induce oxidative stress (OS), senescence, and senescence-associated inflammation of the fetal membranes as reported mechanisms related to pPROM. Inflammation can also arise in fetal membrane cells (amnion/chorion) due to OS-induced autophagy and epithelial-mesenchymal transition (EMT). Autophagy, EMT, and their correlation in pPROM, along with OS-induced autophagy-related changes in amnion and chorion cells in vitro, were investigated. Immunocytochemistry staining of cytokeratin-18 (epithelial marker)/vimentin (mesenchymal marker) and proautophagy-inducing factor LC3B were performed in fetal membranes from pPROM, term not in labor, and term labor. Ultrastructural changes associated with autophagy were verified by transmission electron microscopy of the fetal membranes and in cells exposed to cigarette smoke extract (an OS inducer). EMT and LC3B staining was compared in the chorion from pPROM versus term not in labor. Transmission electron microscopy confirmed autophagosome formation in pPROM amnion and chorion. In cell culture, autophagosomes were formed in the amnion with OS treatment, while autophagosomes were accumulated in both cell types with autophagy inhibition. This study documents the association between pPROMs and amniochorion autophagy and EMT, and supports a role for OS in inducing dysfunctional cells that increase inflammation, predisposing membranes to rupture.
- MeSH
- autofagie MeSH
- epitelo-mezenchymální tranzice MeSH
- extraembryonální obaly * metabolismus MeSH
- lidé MeSH
- novorozenec MeSH
- předčasný odtok plodové vody * metabolismus MeSH
- zánět patologie MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH