• Je něco špatně v tomto záznamu ?

Markov chain Monte Carlo in practice : /interdisciplinary statistics/

edited by W.R. Gilks, S. Richardson and D.J. Spiegelhalter

Publikováno
Boca Raton : Chapman & Hall/CRC, 1998
Vydání
1st ed.
Stránkování
xvii, 486 s., grafy, tab.

Jazyk angličtina Země Spojené státy americké

Perzistentní odkaz   https://www.medvik.cz/link/MED00139615
Odkazy

Knihovny.cz ISBN 0-412-05551-1

In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France, researchers map a rare disease with relatively little variation.Each of these studies applied Markov chain Monte Carlo methods to produce more accurate and inclusive results. General state-space Markov chain theory has seen several developments that have made it both more accessible and more powerful to the general statistician. Markov Chain Monte Carlo in Practice introduces MCMC methods and their applications, providing some theoretical background as well. The authors are researchers who have made key contributions in the recent development of MCMC methodology and its application. Considering the broad audience, the editors emphasize practice rather than theory, keeping the technical content to a minimum. The examples range from the simplest application, Gibbs sampling, to more complex applications. The first chapter contains enough information to allow the reader to start applying MCMC in a basic way. The following chapters cover main issues, important concepts and results, techniques for implementing MCMC, improving its performance, assessing model adequacy, choosing between models, and applications and their domains.Markov Chain Monte Carlo in Practice is a thorough, clear introduction to the methodology and applications of this simple idea with enormous potential. It shows the importance of MCMC in real applications, such as archaeology, astronomy, biostatistics, genetics, epidemiology, and image analysis, and provides an excellent base for MCMC to be applied to other fields as well.

Obsahuje bibliografii a index

Vlastník Detaily Služby
Další knihovny Detaily Služby
ABC004 ABC004 Signatura B 12337
BOD002 BOD002 Signatura neuvedena
000      
01384nam 2200409 a 4500
001      
MED00139615
003      
CZ-PrNML
005      
20141219160640.0
008      
001023s1998 xxu eng||
009      
BK
020    __
$a 0-412-05551-1 $q (váz.)
040    __
$a BOD002 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu $c US
072    _7
$x Statistika $a 311 $2 konspekt $7 sk135939
080    __
$a 311 $2 h
245    00
$a Markov chain Monte Carlo in practice : $b /interdisciplinary statistics/ / $c edited by W.R. Gilks, S. Richardson and D.J. Spiegelhalter
250    __
$a 1st ed.
260    __
$a Boca Raton : $b Chapman & Hall/CRC, $c 1998
300    __
$a xvii, 486 s., grafy, tab.
500    __
$a Obsahuje bibliografii a index
650    07
$a statistika jako téma $2 czmesh $7 D013223
650    07
$a metoda Monte Carlo $2 czmesh $7 D009010
650    07
$a MONTE CARLO METHOD $2 czmesh
650    07
$a statistika, zdravotnická statistika $2 mednas $7 nlk20040148271
700    1_
$a Gilks, W. R. $4 edt $7 _gn020013196
700    1_
$a Richardson, S. $4 edt $7 _gn020034615
700    1_
$a Spiegehalter, D. J. $4 edt $7 _gn020039553
990    __
$a 20010621 $b ABA008
991    __
$a 20050527 $b ABA008
BAS    __
$a SKM $a 02 $a 26 $a 11