-
Je něco špatně v tomto záznamu ?
Markov chain Monte Carlo in practice : /interdisciplinary statistics/
edited by W.R. Gilks, S. Richardson and D.J. Spiegelhalter
- Publikováno
- Boca Raton : Chapman & Hall/CRC, 1998
- Vydání
- 1st ed.
- Stránkování
- xvii, 486 s., grafy, tab.
Jazyk angličtina Země Spojené státy americké
Knihovny.cz ISBN
0-412-05551-1
- Konspekt
- Statistika
- NLK Obory
- statistika, zdravotnická statistika
In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France, researchers map a rare disease with relatively little variation.Each of these studies applied Markov chain Monte Carlo methods to produce more accurate and inclusive results. General state-space Markov chain theory has seen several developments that have made it both more accessible and more powerful to the general statistician. Markov Chain Monte Carlo in Practice introduces MCMC methods and their applications, providing some theoretical background as well. The authors are researchers who have made key contributions in the recent development of MCMC methodology and its application. Considering the broad audience, the editors emphasize practice rather than theory, keeping the technical content to a minimum. The examples range from the simplest application, Gibbs sampling, to more complex applications. The first chapter contains enough information to allow the reader to start applying MCMC in a basic way. The following chapters cover main issues, important concepts and results, techniques for implementing MCMC, improving its performance, assessing model adequacy, choosing between models, and applications and their domains.Markov Chain Monte Carlo in Practice is a thorough, clear introduction to the methodology and applications of this simple idea with enormous potential. It shows the importance of MCMC in real applications, such as archaeology, astronomy, biostatistics, genetics, epidemiology, and image analysis, and provides an excellent base for MCMC to be applied to other fields as well.
Obsahuje bibliografii a index
- 000
- 01384nam 2200409 a 4500
- 001
- MED00139615
- 003
- CZ-PrNML
- 005
- 20141219160640.0
- 008
- 001023s1998 xxu eng||
- 009
- BK
- 020 __
- $a 0-412-05551-1 $q (váz.)
- 040 __
- $a BOD002 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu $c US
- 072 _7
- $x Statistika $a 311 $2 konspekt $7 sk135939
- 080 __
- $a 311 $2 h
- 245 00
- $a Markov chain Monte Carlo in practice : $b /interdisciplinary statistics/ / $c edited by W.R. Gilks, S. Richardson and D.J. Spiegelhalter
- 250 __
- $a 1st ed.
- 260 __
- $a Boca Raton : $b Chapman & Hall/CRC, $c 1998
- 300 __
- $a xvii, 486 s., grafy, tab.
- 500 __
- $a Obsahuje bibliografii a index
- 650 07
- $a statistika jako téma $2 czmesh $7 D013223
- 650 07
- $a metoda Monte Carlo $2 czmesh $7 D009010
- 650 07
- $a MONTE CARLO METHOD $2 czmesh
- 650 07
- $a statistika, zdravotnická statistika $2 mednas $7 nlk20040148271
- 700 1_
- $a Gilks, W. R. $4 edt $7 _gn020013196
- 700 1_
- $a Richardson, S. $4 edt $7 _gn020034615
- 700 1_
- $a Spiegehalter, D. J. $4 edt $7 _gn020039553
- 990 __
- $a 20010621 $b ABA008
- 991 __
- $a 20050527 $b ABA008
- BAS __
- $a SKM $a 02 $a 26 $a 11