• Something wrong with this record ?

Model selection and interference : a practical information-theoretic approach

Kenneth P. Burnham, David R. Anderson

Published
New York : Springer, c1998
Edition
[1st ed.]
Pagination
xix, 353 s. : il., vzorce

Language English Country United States

Links

Knihovny.cz ISBN 0-387-98504-2

This book is unique in that it covers the philosophy of model-based data analysis and an omnibus strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. Kullback-Leibler information represents a fundamental quantity in science and is Hirotugu Akaike\'s basis for model selection. The maximized log-likelihood function can be bias-corrected to provide an estimate of expected, relative Kullback-Leibler information. This leads to Akaike\'s Information Criterion (AIC) and various extensions and these are relatively simple and easy to use in practice, but little taught in statistics classes and far less understood in the applied sciences than should be the case. The information theoretic approaches provide a unified and rigorous theory, an extension of likelihood theory, an important application of information theory, and are objective and practical to employ across a very wide class of empirical problems. Parameter estimation has long been viewed as an optimization problem (e.g., maximize the log-likelihood or minimize the residual sum of squared deviations) and under the information theoretic paradigm, data-based model selection is also an optimization problem. This brings model selection and parameter estimation under a common framework - optimization. The value of AIC is computed for each a priori model to be considered and the model with the minimum AIC is used for statistical inference. However, the paradigm described in this book goes beyond merely the computation and interpretation of AIC to select a parsimonious model for inference from empirical data; it refocuses increased attention on a variety of considerations and modeling prior to the actual analysis of data.

Bibliografie

Rejstř.

Owner Details Services
Other libraries Details Services
ABD006 ABD006 Shelf no. neuvedena
000      
01236nam 2200373 a 4500
001      
MED00141899
003      
CZ-PrNML
005      
20141219161032.0
008      
010202s1998 xxu eng||
009      
BK
020    __
$a 0-387-98504-2 $q (váz.)
040    __
$a ABD006 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu $c US
072    _7
$x Statistika $a 311 $2 konspekt $7 sk135939
080    __
$a 311 $2 v
100    1_
$a Burnham, Kenneth P. $4 aut $7 jcu2013786625
245    10
$a Model selection and interference : $b a practical information-theoretic approach / $c Kenneth P. Burnham, David R. Anderson
250    __
$a [1st ed.]
260    __
$a New York : $b Springer, $c c1998
300    __
$a xix, 353 s. : $b il., vzorce
500    __
$a Bibliografie
500    __
$a Rejstř.
650    07
$a biologie $2 czmesh $7 D001695
650    07
$a MATEMATICKÉ VÝPOČTY $2 czmesh
650    07
$a statistika jako téma $2 czmesh $7 D013223
650    07
$a statistika, zdravotnická statistika $2 mednas $7 nlk20040148271
650    07
$a biologie $2 mednas $7 nlk20040147082
700    1_
$a Anderson, David R. $q (David Raymond) $4 aut $7 _gn010012668
990    __
$a 20010920 $b ABA008
991    __
$a 20050527 $b ABA008
BAS    __
$a SKM $a 02 $a 26 $a 11