-
Something wrong with this record ?
Valproic acid in the complex therapy of malignant tumors
J. Hrebackova, J. Hrabeta, T. Eckschlager
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NR9522
MZ0
CEP Register
- MeSH
- Acetylation drug effects MeSH
- Apoptosis drug effects physiology MeSH
- Azacitidine analogs & derivatives pharmacology MeSH
- Cell Cycle drug effects physiology MeSH
- Drug Resistance, Neoplasm MeSH
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive drug therapy MeSH
- Epilepsy drug therapy MeSH
- Histone Deacetylases drug effects MeSH
- Histones drug effects physiology MeSH
- Angiogenesis Inhibitors pharmacology MeSH
- Histone Deacetylase Inhibitors pharmacology MeSH
- Topoisomerase II Inhibitors pharmacology MeSH
- Clinical Trials as Topic MeSH
- Drug Therapy, Combination MeSH
- Combined Modality Therapy MeSH
- Valproic Acid pharmacology MeSH
- Humans MeSH
- Tumor Suppressor Protein p53 drug effects physiology MeSH
- Neoplasms drug therapy MeSH
- Drug Repositioning MeSH
- Drug Synergism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Valproic acid (VPA) has been used for epilepsy treatment since the 1970s. Recently, it was demonstrated that it inhibits histone deacetylases (HDAC), modulates cell cycle, induces tumor cell death and inhibits angiogenesis in various tumor models. The exact anticancer mechanisms of VPA remains unclear, but HDAC inhibition, extracellular-regulated kinase activation, protein kinase C inhibition, Wnt-signaling activation, proteasomal degradation of HDAC, possible downregulation of telomerase activity and DNA demethylation participate in its anticancer effect. Hyperacetylation of histones, as a result of HDAC inhibition, seems to be the most important mechanism of VPA's antitumor action. Preclinical data suggest that the anticancer effect of chemotherapy is augmented when VPA is used in combination with cytostatics. Besides the effects of pretreatment with HDAC inhibitors, which increases the efficiency of 5-aza-2'-deoxycytidine, VP-16, ellipticine, doxorubicin and cisplatin, pre-exposure to VPA increases the cytotoxicity of topoisomerase II inhibitors. There are two suggested cell death mechanisms caused by potentiation of anticancer drugs by HDAC inhibitors that are neither exclusive nor synergistic. The first involves apoptosis and can be both p53 dependent or independent; the second involves mechanisms other than apoptosis. In resistant chronic myeloid leukemia (CML), VPA restores sensitivity to imatinib. We have demonstrated the synergistic effects of VPA and cisplatin in neuroblastoma cells. VPA can be taken orally, crosses the blood brain barrier and can be used for extended periods. Clinical trials in patients with malignancies are being conducted. The use of VPA prior to or together with anticancer drugs may thus prove a beneficial treatment.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026954
- 003
- CZ-PrNML
- 005
- 20160601082806.0
- 007
- ta
- 008
- 120816s2010 ne f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.2174/138945010790711923 $2 doi
- 035 __
- $a (PubMed)20214599
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Hřebačková, Jana $7 _AN046453 $u Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- 245 10
- $a Valproic acid in the complex therapy of malignant tumors / $c J. Hrebackova, J. Hrabeta, T. Eckschlager
- 520 9_
- $a Valproic acid (VPA) has been used for epilepsy treatment since the 1970s. Recently, it was demonstrated that it inhibits histone deacetylases (HDAC), modulates cell cycle, induces tumor cell death and inhibits angiogenesis in various tumor models. The exact anticancer mechanisms of VPA remains unclear, but HDAC inhibition, extracellular-regulated kinase activation, protein kinase C inhibition, Wnt-signaling activation, proteasomal degradation of HDAC, possible downregulation of telomerase activity and DNA demethylation participate in its anticancer effect. Hyperacetylation of histones, as a result of HDAC inhibition, seems to be the most important mechanism of VPA's antitumor action. Preclinical data suggest that the anticancer effect of chemotherapy is augmented when VPA is used in combination with cytostatics. Besides the effects of pretreatment with HDAC inhibitors, which increases the efficiency of 5-aza-2'-deoxycytidine, VP-16, ellipticine, doxorubicin and cisplatin, pre-exposure to VPA increases the cytotoxicity of topoisomerase II inhibitors. There are two suggested cell death mechanisms caused by potentiation of anticancer drugs by HDAC inhibitors that are neither exclusive nor synergistic. The first involves apoptosis and can be both p53 dependent or independent; the second involves mechanisms other than apoptosis. In resistant chronic myeloid leukemia (CML), VPA restores sensitivity to imatinib. We have demonstrated the synergistic effects of VPA and cisplatin in neuroblastoma cells. VPA can be taken orally, crosses the blood brain barrier and can be used for extended periods. Clinical trials in patients with malignancies are being conducted. The use of VPA prior to or together with anticancer drugs may thus prove a beneficial treatment.
- 650 _2
- $a acetylace $x účinky léků $7 D000107
- 650 _2
- $a inhibitory angiogeneze $x farmakologie $7 D020533
- 650 _2
- $a apoptóza $x účinky léků $x fyziologie $7 D017209
- 650 _2
- $a azacytidin $x analogy a deriváty $x farmakologie $7 D001374
- 650 _2
- $a buněčný cyklus $x účinky léků $x fyziologie $7 D002453
- 650 _2
- $a klinické zkoušky jako téma $7 D002986
- 650 _2
- $a kombinovaná terapie $7 D003131
- 650 _2
- $a přehodnocení terapeutických indikací léčivého přípravku $7 D058492
- 650 _2
- $a chemorezistence $7 D019008
- 650 _2
- $a synergismus léků $7 D004357
- 650 _2
- $a kombinovaná farmakoterapie $7 D004359
- 650 _2
- $a epilepsie $x farmakoterapie $7 D004827
- 650 _2
- $a inhibitory histondeacetylas $x farmakologie $7 D056572
- 650 _2
- $a histondeacetylasy $x účinky léků $7 D006655
- 650 _2
- $a histony $x účinky léků $x fyziologie $7 D006657
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a chronická myeloidní leukemie $x farmakoterapie $7 D015464
- 650 _2
- $a nádory $x farmakoterapie $7 D009369
- 650 _2
- $a inhibitory topoisomerasy II $x farmakologie $7 D059005
- 650 _2
- $a nádorový supresorový protein p53 $x účinky léků $x fyziologie $7 D016159
- 650 _2
- $a kyselina valproová $x farmakologie $7 D014635
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hraběta, Jan $7 xx0127445 $u Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- 700 1_
- $a Eckschlager, Tomáš, $d 1956- $7 jn20000400613 $u Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- 773 0_
- $w MED00007902 $t Current drug targets $x 1873-5592 $g Roč. 11, č. 3 (2010), s. 361-379
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20214599 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160601082929 $b ABA008
- 999 __
- $a ok $b bmc $g 948996 $s 784300
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 11 $c 3 $d 361-379 $i 1873-5592 $m Current drug targets $n Curr Drug Targets $x MED00007902
- GRA __
- $a NR9522 $p MZ0
- LZP __
- $b NLK122 $a Pubmed-20120816/11/01