-
Je něco špatně v tomto záznamu ?
Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation
P. Kolesar, P. Sarangi, V. Altmannova, X. Zhao, L. Krejci,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
22705796
DOI
10.1093/nar/gks484
Knihovny.cz E-zdroje
- MeSH
- DNA-helikasy chemie metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- lysin metabolismus MeSH
- molekulární sekvence - údaje MeSH
- proliferační antigen buněčného jádra metabolismus MeSH
- protein SUMO-1 metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae enzymologie MeSH
- sekvence aminokyselin MeSH
- sumoylace MeSH
- ubikvitinligasy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The Srs2 DNA helicase of Saccharomyces cerevisiae affects recombination in multiple ways. Srs2 not only inhibits recombination at stalled replication forks but also promotes the synthesis-dependent strand annealing (SDSA) pathway of recombination. Both functions of Srs2 are regulated by sumoylation--sumoylated PCNA recruits Srs2 to the replication fork to disfavor recombination, and sumoylation of Srs2 can be inhibitory to SDSA in certain backgrounds. To understand Srs2 function, we characterize the mechanism of its sumoylation in vitro and in vivo. Our data show that Srs2 is sumoylated at three lysines, and its sumoylation is facilitated by the Siz SUMO ligases. We also show that Srs2 binds to SUMO via a C-terminal SUMO-interacting motif (SIM). The SIM region is required for Srs2 sumoylation, likely by binding to SUMO-charged Ubc9. Srs2's SIM also cooperates with an adjacent PCNA-specific interaction site in binding to sumoylated PCNA to ensure the specificity of the interaction. These two functions of Srs2's SIM exhibit a competitive relationship: sumoylation of Srs2 decreases the interaction between the SIM and SUMO-PCNA, and the SUMO-PCNA-SIM interaction disfavors Srs2 sumoylation. Our findings suggest a potential mechanism for the equilibrium of sumoylated and PCNA-bound pools of Srs2 in cells.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13000723
- 003
- CZ-PrNML
- 005
- 20130108115833.0
- 007
- ta
- 008
- 130108s2012 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gks484 $2 doi
- 035 __
- $a (PubMed)22705796
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kolesar, Peter $u Department of Biology, National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic.
- 245 10
- $a Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation / $c P. Kolesar, P. Sarangi, V. Altmannova, X. Zhao, L. Krejci,
- 520 9_
- $a The Srs2 DNA helicase of Saccharomyces cerevisiae affects recombination in multiple ways. Srs2 not only inhibits recombination at stalled replication forks but also promotes the synthesis-dependent strand annealing (SDSA) pathway of recombination. Both functions of Srs2 are regulated by sumoylation--sumoylated PCNA recruits Srs2 to the replication fork to disfavor recombination, and sumoylation of Srs2 can be inhibitory to SDSA in certain backgrounds. To understand Srs2 function, we characterize the mechanism of its sumoylation in vitro and in vivo. Our data show that Srs2 is sumoylated at three lysines, and its sumoylation is facilitated by the Siz SUMO ligases. We also show that Srs2 binds to SUMO via a C-terminal SUMO-interacting motif (SIM). The SIM region is required for Srs2 sumoylation, likely by binding to SUMO-charged Ubc9. Srs2's SIM also cooperates with an adjacent PCNA-specific interaction site in binding to sumoylated PCNA to ensure the specificity of the interaction. These two functions of Srs2's SIM exhibit a competitive relationship: sumoylation of Srs2 decreases the interaction between the SIM and SUMO-PCNA, and the SUMO-PCNA-SIM interaction disfavors Srs2 sumoylation. Our findings suggest a potential mechanism for the equilibrium of sumoylated and PCNA-bound pools of Srs2 in cells.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a DNA-helikasy $x chemie $x metabolismus $7 D004265
- 650 _2
- $a lysin $x metabolismus $7 D008239
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a proliferační antigen buněčného jádra $x metabolismus $7 D018809
- 650 _2
- $a interakční proteinové domény a motivy $7 D054730
- 650 _2
- $a protein SUMO-1 $x metabolismus $7 D025842
- 650 _2
- $a Saccharomyces cerevisiae $x enzymologie $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x chemie $x metabolismus $7 D029701
- 650 _2
- $a sumoylace $7 D058207
- 650 _2
- $a ubikvitinligasy $x metabolismus $7 D044767
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sarangi, Prabha
- 700 1_
- $a Altmannová, Veronika $7 mub2011626283
- 700 1_
- $a Zhao, Xiaolan
- 700 1_
- $a Krejci, Lumir
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 40, č. 16 (2012), s. 7831-43
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22705796 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130108 $b ABA008
- 991 __
- $a 20130108111759 $b ABA008
- 999 __
- $a ok $b bmc $g 963505 $s 798887
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 40 $c 16 $d 7831-43 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20130108