-
Je něco špatně v tomto záznamu ?
Structure and mechanical properties of the ribosomal L1 stalk three-way junction
K. Réblová, J. Sponer, F. Lankas,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
22451682
DOI
10.1093/nar/gks258
Knihovny.cz E-zdroje
- MeSH
- biomechanika MeSH
- konformace nukleové kyseliny MeSH
- ribozomální proteiny chemie MeSH
- RNA ribozomální 23S chemie MeSH
- simulace molekulární dynamiky MeSH
- velké podjednotky ribozomu archebakteriální chemie MeSH
- velké podjednotky ribozomu bakteriální chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The L1 stalk is a key mobile element of the large ribosomal subunit which interacts with tRNA during translocation. Here, we investigate the structure and mechanical properties of the rRNA H76/H75/H79 three-way junction at the base of the L1 stalk from four different prokaryotic organisms. We propose a coarse-grained elastic model and parameterize it using large-scale atomistic molecular dynamics simulations. Global properties of the junction are well described by a model in which the H76 helix is represented by a straight, isotropically flexible elastic rod, while the junction core is represented by an isotropically flexible spherical hinge. Both the core and the helix contribute substantially to the overall H76 bending fluctuations. The presence of wobble pairs in H76 does not induce any increased flexibility or anisotropy to the helix. The half-closed conformation of the L1 stalk seems to be accessible by thermal fluctuations of the junction itself, without any long-range allosteric effects. Bending fluctuations of H76 with a bulge introduced in it suggest a rationale for the precise position of the bulge in eukaryotes. Our elastic model can be generalized to other RNA junctions found in biological systems or in nanotechnology.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13000900
- 003
- CZ-PrNML
- 005
- 20130108115834.0
- 007
- ta
- 008
- 130108s2012 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gks258 $2 doi
- 035 __
- $a (PubMed)22451682
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Réblová, Kamila $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
- 245 10
- $a Structure and mechanical properties of the ribosomal L1 stalk three-way junction / $c K. Réblová, J. Sponer, F. Lankas,
- 520 9_
- $a The L1 stalk is a key mobile element of the large ribosomal subunit which interacts with tRNA during translocation. Here, we investigate the structure and mechanical properties of the rRNA H76/H75/H79 three-way junction at the base of the L1 stalk from four different prokaryotic organisms. We propose a coarse-grained elastic model and parameterize it using large-scale atomistic molecular dynamics simulations. Global properties of the junction are well described by a model in which the H76 helix is represented by a straight, isotropically flexible elastic rod, while the junction core is represented by an isotropically flexible spherical hinge. Both the core and the helix contribute substantially to the overall H76 bending fluctuations. The presence of wobble pairs in H76 does not induce any increased flexibility or anisotropy to the helix. The half-closed conformation of the L1 stalk seems to be accessible by thermal fluctuations of the junction itself, without any long-range allosteric effects. Bending fluctuations of H76 with a bulge introduced in it suggest a rationale for the precise position of the bulge in eukaryotes. Our elastic model can be generalized to other RNA junctions found in biological systems or in nanotechnology.
- 650 _2
- $a biomechanika $7 D001696
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a RNA ribozomální 23S $x chemie $7 D012338
- 650 _2
- $a ribozomální proteiny $x chemie $7 D012269
- 650 _2
- $a velké podjednotky ribozomu archebakteriální $x chemie $7 D054748
- 650 _2
- $a velké podjednotky ribozomu bakteriální $x chemie $7 D054681
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sponer, Jirí
- 700 1_
- $a Lankas, Filip
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 40, č. 13 (2012), s. 6290-303
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22451682 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130108 $b ABA008
- 991 __
- $a 20130108111637 $b ABA008
- 999 __
- $a ok $b bmc $g 963682 $s 799064
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 40 $c 13 $d 6290-303 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20130108