Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Second harmonic generation imaging of the deep shade plant Selaginella erythropus using multifunctional two-photon laser scanning microscopy

AH. Reshak, CR. Sheue,

. 2012 ; 248 (3) : 234-44.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13024251

BACKGROUND: Multifunctional two-photon laser scanning microscopy provides attractive advantages over conventional two-photon laser scanning microscopy. For the first time, simultaneous measurement of the second harmonic generation (SHG) signals in the forward and backward directions and two photon excitation fluorescence were achieved from the deep shade plant Selaginella erythropus. RESULTS: These measurements show that the S. erythropus leaves produce high SHG signals in both directions and the SHG signals strongly depend on the laser's status of polarization and the orientation of the dipole moment in the molecules that interact with the laser light. The novelty of this work is (1) uncovering the unusual structure of S. erythropus leaves, including diverse chloroplasts, various cell types and micromophology, which are consistent with observations from general electron microscopy; and (2) using the multifunctional two-photon laser scanning microscopy by combining three platforms of laser scanning microscopy, fluorescence microscopy, harmonic generation microscopy and polarizing microscopy for detecting the SHG signals in the forward and backward directions, as well as two photon excitation fluorescence. CONCLUSIONS: With the multifunctional two-photon laser scanning microscopy, one can use noninvasive SHG imaging to reveal the true architecture of the sample, without photodamage or photobleaching, by utilizing the fact that the SHG is known to leave no energy deposition on the interacting matter because of the SHG virtual energy conservation characteristic.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13024251
003      
CZ-PrNML
005      
20130710115810.0
007      
ta
008      
130703s2012 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/j.1365-2818.2012.03668.x $2 doi
035    __
$a (PubMed)23062103
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Reshak, A H $u School of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333, Czech Republic. maalidph@yahoo.co.uk
245    10
$a Second harmonic generation imaging of the deep shade plant Selaginella erythropus using multifunctional two-photon laser scanning microscopy / $c AH. Reshak, CR. Sheue,
520    9_
$a BACKGROUND: Multifunctional two-photon laser scanning microscopy provides attractive advantages over conventional two-photon laser scanning microscopy. For the first time, simultaneous measurement of the second harmonic generation (SHG) signals in the forward and backward directions and two photon excitation fluorescence were achieved from the deep shade plant Selaginella erythropus. RESULTS: These measurements show that the S. erythropus leaves produce high SHG signals in both directions and the SHG signals strongly depend on the laser's status of polarization and the orientation of the dipole moment in the molecules that interact with the laser light. The novelty of this work is (1) uncovering the unusual structure of S. erythropus leaves, including diverse chloroplasts, various cell types and micromophology, which are consistent with observations from general electron microscopy; and (2) using the multifunctional two-photon laser scanning microscopy by combining three platforms of laser scanning microscopy, fluorescence microscopy, harmonic generation microscopy and polarizing microscopy for detecting the SHG signals in the forward and backward directions, as well as two photon excitation fluorescence. CONCLUSIONS: With the multifunctional two-photon laser scanning microscopy, one can use noninvasive SHG imaging to reveal the true architecture of the sample, without photodamage or photobleaching, by utilizing the fact that the SHG is known to leave no energy deposition on the interacting matter because of the SHG virtual energy conservation characteristic.
650    _2
$a chloroplasty $x chemie $x ultrastruktura $7 D002736
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a konfokální mikroskopie $x metody $7 D018613
650    _2
$a mikroskopie fluorescenční multifotonová $x metody $7 D036641
650    _2
$a listy rostlin $x chemie $x ultrastruktura $7 D018515
650    _2
$a Selaginellaceae $x chemie $x ultrastruktura $7 D032503
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Sheue, C-R $u -
773    0_
$w MED00002805 $t Journal of microscopy $x 1365-2818 $g Roč. 248, č. 3 (2012), s. 234-44
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23062103 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130703 $b ABA008
991    __
$a 20130710120233 $b ABA008
999    __
$a ok $b bmc $g 987931 $s 822631
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 248 $c 3 $d 234-44 $i 1365-2818 $m Journal of microscopy $n J Microsc $x MED00002805
LZP    __
$a Pubmed-20130703

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...