-
Je něco špatně v tomto záznamu ?
Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods
M. Wimmerová, S. Kozmon, I. Nečasová, SK. Mishra, J. Komárek, J. Koča,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-10-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- aminokyseliny aromatické chemie genetika metabolismus MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- fukosa chemie metabolismus MeSH
- konformace proteinů MeSH
- konformace sacharidů MeSH
- krystalografie rentgenová MeSH
- lektiny chemie genetika metabolismus MeSH
- molekulární modely * MeSH
- mutace MeSH
- proteiny chemie genetika metabolismus MeSH
- Ralstonia solanacearum genetika metabolismus MeSH
- sacharidy chemie MeSH
- sekundární struktura proteinů MeSH
- terciární struktura proteinů MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Carbohydrate-receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactions. One of the most important is the interaction of a carbohydrate's apolar part with aromatic amino acid residues, known as dispersion interaction or CH/π interaction. In the study presented here, we attempted for the first time to quantify how the CH/π interaction contributes to a more general carbohydrate-protein interaction. We used a combined experimental approach, creating single and double point mutants with high level computational methods, and applied both to Ralstonia solanacearum (RSL) lectin complexes with α-L-Me-fucoside. Experimentally measured binding affinities were compared with computed carbohydrate-aromatic amino acid residue interaction energies. Experimental binding affinities for the RSL wild type, phenylalanine and alanine mutants were -8.5, -7.1 and -4.1 kcal x mol(-1), respectively. These affinities agree with the computed dispersion interaction energy between carbohydrate and aromatic amino acid residues for RSL wild type and phenylalanine, with values -8.8, -7.9 kcal x mol(-1), excluding the alanine mutant where the interaction energy was -0.9 kcal x mol(-1). Molecular dynamics simulations show that discrepancy can be caused by creation of a new hydrogen bond between the α-L-Me-fucoside and RSL. Observed results suggest that in this and similar cases the carbohydrate-receptor interaction can be driven mainly by a dispersion interaction.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13024258
- 003
- CZ-PrNML
- 005
- 20130703125625.0
- 007
- ta
- 008
- 130703s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0046032 $2 doi
- 035 __
- $a (PubMed)23056230
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Wimmerová, Michaela $u CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic. michaw@chemi.muni.cz
- 245 10
- $a Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods / $c M. Wimmerová, S. Kozmon, I. Nečasová, SK. Mishra, J. Komárek, J. Koča,
- 520 9_
- $a Carbohydrate-receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactions. One of the most important is the interaction of a carbohydrate's apolar part with aromatic amino acid residues, known as dispersion interaction or CH/π interaction. In the study presented here, we attempted for the first time to quantify how the CH/π interaction contributes to a more general carbohydrate-protein interaction. We used a combined experimental approach, creating single and double point mutants with high level computational methods, and applied both to Ralstonia solanacearum (RSL) lectin complexes with α-L-Me-fucoside. Experimentally measured binding affinities were compared with computed carbohydrate-aromatic amino acid residue interaction energies. Experimental binding affinities for the RSL wild type, phenylalanine and alanine mutants were -8.5, -7.1 and -4.1 kcal x mol(-1), respectively. These affinities agree with the computed dispersion interaction energy between carbohydrate and aromatic amino acid residues for RSL wild type and phenylalanine, with values -8.8, -7.9 kcal x mol(-1), excluding the alanine mutant where the interaction energy was -0.9 kcal x mol(-1). Molecular dynamics simulations show that discrepancy can be caused by creation of a new hydrogen bond between the α-L-Me-fucoside and RSL. Observed results suggest that in this and similar cases the carbohydrate-receptor interaction can be driven mainly by a dispersion interaction.
- 650 _2
- $a aminokyseliny aromatické $x chemie $x genetika $x metabolismus $7 D024322
- 650 _2
- $a bakteriální proteiny $x chemie $x genetika $x metabolismus $7 D001426
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a konformace sacharidů $7 D002236
- 650 _2
- $a sacharidy $x chemie $7 D002241
- 650 _2
- $a krystalografie rentgenová $7 D018360
- 650 _2
- $a fukosa $x chemie $x metabolismus $7 D005643
- 650 _2
- $a vodíková vazba $7 D006860
- 650 _2
- $a lektiny $x chemie $x genetika $x metabolismus $7 D037102
- 650 12
- $a molekulární modely $7 D008958
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 _2
- $a terciární struktura proteinů $7 D017434
- 650 _2
- $a proteiny $x chemie $x genetika $x metabolismus $7 D011506
- 650 _2
- $a Ralstonia solanacearum $x genetika $x metabolismus $7 D043368
- 650 _2
- $a termodynamika $7 D013816
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kozmon, Stanislav $u -
- 700 1_
- $a Nečasová, Ivona $u -
- 700 1_
- $a Mishra, Sushil Kumar $u -
- 700 1_
- $a Komárek, Jan $u -
- 700 1_
- $a Koča, Jaroslav $u -
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 7, č. 10 (2012), s. e46032
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23056230 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130703 $b ABA008
- 991 __
- $a 20130703130043 $b ABA008
- 999 __
- $a ok $b bmc $g 987938 $s 822638
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 7 $c 10 $d e46032 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20130703