Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Musculoskeletal modeling of hip joint and fracture analysis for surgical planning using FEA [Muskel-Skelett-Modellierung of der Hüftgelenk und Bruch analyse für OP-Planung mittels FEA]

Sathya Ganapathi, Shilfa Thoppay Premkumar, Thenmozhi Malaikannu, Kavitha Anandan

. 2013 ; 9 (2) : 27-36.

Language English Country Czech Republic Media elektronický zdroj

Background: Hip fractures are a major cause for disability in patients. They require immediate attention as they could otherwise cause death. Hip fractures are almost always treated with surgery by implantation. Implants are of various types accounting for the many variations in hip fractures. Objectives: This paper presents the design and analysis of a hip implant using Finite element analysis. Fracture conditions are determined and the optimal design of the implant is obtained for improving healthcare and patient safety. Methods: Anthropometric parameters of the human femur bone are collected from a particular age group. These are then used to obtain a CAD model of the bone using CATIA. The standard Charnley hip implant, used in total hip replacement surgery is also modeled. The proposed models are analyzed using ANSYS software by assigning appropriate material properties to the bone and implant. The stress distribution is observed when loads corresponding to normal gait conditions are applied. The load at which fracture occurs is then determined experimentally. Results: Based on the analysis results of the modeled bone, the implant is optimized by varying the base cross section, the bio-materials used, and the design parameters so that, its stress response mimics that of the actual bone. It is found that the model no 2 as in Table 6 with head diameter 28mm, neck diameter 10mm, neck angle 128 degrees has minimum strain at the neck region with a value of 0.65 and is found to be suitable for implant design. Results show that initiation of fracture in the implant occurs at 2000N and complete fracture occurs at 2400N. Conclusions: The 3D models are very useful in simulation of bone fractures and internal fixations with implants. In this work, the hip joint and implant model, developed in CATIA software, help to understand how these structures adapt to external forces disturbances [15]. This will help the doctors to chose the optimal implant for a particular patient. This leads to greater accuracy and patient specificity.

Muskel-Skelett-Modellierung of der Hüftgelenk und Bruch analyse für OP-Planung mittels FEA

Musculoskeletal modeling of hip joint and fracture analysis for surgical planning using FEA [elektronický zdroj] /

References provided by Crossref.org

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc14040316
003      
CZ-PrNML
005      
20161027142223.0
007      
cr|cn|
008      
140106s2013 xr ap fs 000 0eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2013.09.2.5 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng $b ger
044    __
$a xr
100    1_
$a Ganapathi, Sathya $u Department of Bio-medical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
245    10
$a Musculoskeletal modeling of hip joint and fracture analysis for surgical planning using FEA $h [elektronický zdroj] / $c Sathya Ganapathi, Shilfa Thoppay Premkumar, Thenmozhi Malaikannu, Kavitha Anandan
246    31
$a Muskel-Skelett-Modellierung of der Hüftgelenk und Bruch analyse für OP-Planung mittels FEA
504    __
$a Literatura
520    9_
$a Background: Hip fractures are a major cause for disability in patients. They require immediate attention as they could otherwise cause death. Hip fractures are almost always treated with surgery by implantation. Implants are of various types accounting for the many variations in hip fractures. Objectives: This paper presents the design and analysis of a hip implant using Finite element analysis. Fracture conditions are determined and the optimal design of the implant is obtained for improving healthcare and patient safety. Methods: Anthropometric parameters of the human femur bone are collected from a particular age group. These are then used to obtain a CAD model of the bone using CATIA. The standard Charnley hip implant, used in total hip replacement surgery is also modeled. The proposed models are analyzed using ANSYS software by assigning appropriate material properties to the bone and implant. The stress distribution is observed when loads corresponding to normal gait conditions are applied. The load at which fracture occurs is then determined experimentally. Results: Based on the analysis results of the modeled bone, the implant is optimized by varying the base cross section, the bio-materials used, and the design parameters so that, its stress response mimics that of the actual bone. It is found that the model no 2 as in Table 6 with head diameter 28mm, neck diameter 10mm, neck angle 128 degrees has minimum strain at the neck region with a value of 0.65 and is found to be suitable for implant design. Results show that initiation of fracture in the implant occurs at 2000N and complete fracture occurs at 2400N. Conclusions: The 3D models are very useful in simulation of bone fractures and internal fixations with implants. In this work, the hip joint and implant model, developed in CATIA software, help to understand how these structures adapt to external forces disturbances [15]. This will help the doctors to chose the optimal implant for a particular patient. This leads to greater accuracy and patient specificity.
650    12
$a muskuloskeletální systém $x anatomie a histologie $x chirurgie $x zranění $7 D009141
650    12
$a fraktury kyčle $x chirurgie $x terapie $7 D006620
650    12
$a protézy a implantáty $7 D019736
650    _2
$a antropometrie $x metody $7 D000886
650    12
$a zobrazování trojrozměrné $x metody $x přístrojové vybavení $x využití $7 D021621
650    _2
$a počítače $7 D003201
650    _2
$a lidé $7 D006801
650    _2
$a ortopedické výkony $x metody $x přístrojové vybavení $x trendy $7 D019637
650    _2
$a statistika jako téma $7 D013223
700    1_
$a Premkumar, Shilfa Thoppay $u Department of Bio-medical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
700    1_
$a Malaikannu, Thenmozhi $u Department of Bio-medical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
700    1_
$a Anandan, Kavitha $u Department of Bio-medical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India $7 gn_A_00005832
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 9, č. 2 (2013), s. 27-36 $w MED00173462
856    41
$u http://www.ejbi.org/en/ejbi/artinfo/167-en-18.html $y plný text volně přístupný
910    __
$a ABA008 $z 0 $y 4
990    __
$a 20140105160254 $b ABA008
991    __
$a 20161027142640 $b ABA008
999    __
$a ok $b bmc $g 1004723 $s 838821
BAS    __
$a 3 $a 4
BMC    __
$a 2013 $b 9 $c 2 $d 27-36 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK185 $d 20140206 $a NLK 2014-03/vt

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...