-
Something wrong with this record ?
Holoenzyme structures of endothelial nitric oxide synthase - an allosteric role for calmodulin in pivoting the FMN domain for electron transfer
N. Volkmann, P. Martásek, LJ. Roman, XP. Xu, C. Page, M. Swift, D. Hanein, BS. Masters,
Language English Country United States
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
- MeSH
- Allosteric Regulation MeSH
- Flavin Mononucleotide chemistry MeSH
- Heme chemistry MeSH
- Holoenzymes chemistry MeSH
- Calmodulin chemistry metabolism MeSH
- Kinetics MeSH
- Oxidation-Reduction MeSH
- Cattle MeSH
- Nitric Oxide Synthase Type III chemistry metabolism MeSH
- Protein Structure, Tertiary MeSH
- Electron Transport MeSH
- Calcium chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
While the three-dimensional structures of heme- and flavin-binding domains of the NOS isoforms have been determined, the structures of the holoenzymes remained elusive. Application of electron cryo-microscopy and structural modeling of the bovine endothelial nitric oxide synthase (eNOS) holoenzyme produced detailed models of the intact holoenzyme in the presence and absence of Ca(2+)/calmodulin (CaM). These models accommodate the cross-electron transfer from the reductase in one monomer to the heme in the opposite monomer. The heme domain acts as the anchoring dimeric structure for the entire enzyme molecule, while the FMN domain is activated by CaM to move flexibly to bridge the distance between the reductase and oxygenase domains. Our results indicate that the key regulatory role of CaM involves the stabilization of structural intermediates and precise positioning of the pivot for the FMN domain tethered shuttling motion to accommodate efficient and rapid electron transfer in the homodimer of eNOS.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023069
- 003
- CZ-PrNML
- 005
- 20150729101523.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jsb.2014.08.006 $2 doi
- 035 __
- $a (PubMed)25175399
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Volkmann, Niels $u Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA. Electronic address: niels@burnham.org.
- 245 10
- $a Holoenzyme structures of endothelial nitric oxide synthase - an allosteric role for calmodulin in pivoting the FMN domain for electron transfer / $c N. Volkmann, P. Martásek, LJ. Roman, XP. Xu, C. Page, M. Swift, D. Hanein, BS. Masters,
- 520 9_
- $a While the three-dimensional structures of heme- and flavin-binding domains of the NOS isoforms have been determined, the structures of the holoenzymes remained elusive. Application of electron cryo-microscopy and structural modeling of the bovine endothelial nitric oxide synthase (eNOS) holoenzyme produced detailed models of the intact holoenzyme in the presence and absence of Ca(2+)/calmodulin (CaM). These models accommodate the cross-electron transfer from the reductase in one monomer to the heme in the opposite monomer. The heme domain acts as the anchoring dimeric structure for the entire enzyme molecule, while the FMN domain is activated by CaM to move flexibly to bridge the distance between the reductase and oxygenase domains. Our results indicate that the key regulatory role of CaM involves the stabilization of structural intermediates and precise positioning of the pivot for the FMN domain tethered shuttling motion to accommodate efficient and rapid electron transfer in the homodimer of eNOS.
- 650 _2
- $a alosterická regulace $7 D000494
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vápník $x chemie $x metabolismus $7 D002118
- 650 _2
- $a kalmodulin $x chemie $x metabolismus $7 D002147
- 650 _2
- $a skot $7 D002417
- 650 _2
- $a transport elektronů $7 D004579
- 650 _2
- $a flavinmononukleotid $x chemie $7 D005486
- 650 _2
- $a hem $x chemie $7 D006418
- 650 _2
- $a holoenzymy $x chemie $7 D020035
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a synthasa oxidu dusnatého, typ III $x chemie $x metabolismus $7 D052250
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a terciární struktura proteinů $7 D017434
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Martásek, Pavel $u Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Pediatrics, First School of Medicine, Charles University, 12109 Prague, Czech Republic.
- 700 1_
- $a Roman, Linda J $u Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
- 700 1_
- $a Xu, Xiao-Ping $u Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA.
- 700 1_
- $a Page, Christopher $u Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA.
- 700 1_
- $a Swift, Mark $u Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA.
- 700 1_
- $a Hanein, Dorit $u Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92075, USA. Electronic address: dorit@burnham.org.
- 700 1_
- $a Masters, Bettie Sue $u Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
- 773 0_
- $w MED00002951 $t Journal of structural biology $x 1095-8657 $g Roč. 188, č. 1 (2014), s. 46-54
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25175399 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150729101609 $b ABA008
- 999 __
- $a ok $b bmc $g 1083407 $s 906062
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 188 $c 1 $d 46-54 $i 1095-8657 $m Journal of structural biology $n J Struct Biol $x MED00002951
- LZP __
- $a Pubmed-20150709