Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

NAD(P)H-hydrate dehydratase- a metabolic repair enzyme and its role in Bacillus subtilis stress adaptation

M. Petrovova, J. Tkadlec, L. Dvoracek, E. Streitova, I. Licha,

. 2014 ; 9 (11) : e112590. [pub] 20141113

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR), which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase), which was recently assigned in vitro as an ADP/ATP-dependent NAD(P)H-hydrate dehydratase and was demonstrated to belong to the SigB operon. METHODS AND RESULTS: We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin), citrate cycle (isocitrate dehydrogenase, malate dehydrogenase), glycolysis (phosphoglycerate kinase), and decomposition of Amadori products (fructosamine-6-phosphate deglycase). Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase) were altered after ethanol stress. CONCLUSION: We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031731
003      
CZ-PrNML
005      
20170111093316.0
007      
ta
008      
151005s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0112590 $2 doi
035    __
$a (PubMed)25393291
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Petrovova, Miroslava $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic.
245    10
$a NAD(P)H-hydrate dehydratase- a metabolic repair enzyme and its role in Bacillus subtilis stress adaptation / $c M. Petrovova, J. Tkadlec, L. Dvoracek, E. Streitova, I. Licha,
520    9_
$a BACKGROUND: One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR), which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase), which was recently assigned in vitro as an ADP/ATP-dependent NAD(P)H-hydrate dehydratase and was demonstrated to belong to the SigB operon. METHODS AND RESULTS: We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin), citrate cycle (isocitrate dehydrogenase, malate dehydrogenase), glycolysis (phosphoglycerate kinase), and decomposition of Amadori products (fructosamine-6-phosphate deglycase). Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase) were altered after ethanol stress. CONCLUSION: We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells.
650    _2
$a fyziologická adaptace $x genetika $7 D000222
650    _2
$a alanindehydrogenasa $x genetika $x metabolismus $7 D050788
650    _2
$a aspartát-semialdehyddehydrogenasa $x genetika $x metabolismus $7 D001223
650    _2
$a Bacillus subtilis $x účinky léků $x enzymologie $x genetika $7 D001412
650    _2
$a bakteriální proteiny $x genetika $x metabolismus $7 D001426
650    _2
$a Escherichia coli $x genetika $x metabolismus $7 D004926
650    _2
$a ethanol $x farmakologie $7 D000431
650    _2
$a flagelin $x genetika $x metabolismus $7 D005408
650    _2
$a delece genu $7 D017353
650    12
$a regulace genové exprese u bakterií $7 D015964
650    _2
$a glutaminsynthetasa $x genetika $x metabolismus $7 D005974
650    _2
$a reakce na tepelný šok $x genetika $7 D018869
650    _2
$a isocitrátdehydrogenasa $x genetika $x metabolismus $7 D007521
650    _2
$a reduktoizomeráza pro obousměrnou transformaci ketokyselin $x genetika $x metabolismus $7 D050540
650    _2
$a malátdehydrogenasa $x genetika $x metabolismus $7 D008291
650    _2
$a operon $7 D009876
650    _2
$a osmolární koncentrace $7 D009994
650    _2
$a fosfoglycerátkinasa $x genetika $x metabolismus $7 D010735
650    _2
$a fosfotransferasy s alkoholovou skupinou jako akceptorem $x nedostatek $x genetika $7 D017853
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Tkadlec, Jan $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic; Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic. $7 xx0209685
700    1_
$a Dvoracek, Lukas $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic.
700    1_
$a Streitova, Eliska $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic; Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
700    1_
$a Licha, Irena $u Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 9, č. 11 (2014), s. e112590
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25393291 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20170111093414 $b ABA008
999    __
$a ok $b bmc $g 1092607 $s 914857
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 9 $c 11 $d e112590 $e 20141113 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20151005

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...