-
Something wrong with this record ?
Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region
MM. McDonough, R. Šumbera, V. Mazoch, AW. Ferguson, CD. Phillips, J. Bryja,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26340076
DOI
10.1111/mec.13374
Knihovny.cz E-resources
- MeSH
- Amplified Fragment Length Polymorphism Analysis MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- Gerbillinae classification genetics MeSH
- Haplotypes MeSH
- Climate Change MeSH
- DNA, Mitochondrial genetics MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- Genetics, Population * MeSH
- Spatial Analysis MeSH
- Animal Distribution MeSH
- Sequence Analysis, DNA MeSH
- Models, Theoretical MeSH
- Geography MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Africa, Southern MeSH
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.
Department of Biological Sciences Texas Tech University Lubbock TX USA
Department of Zoology Faculty of Science University of South Bohemia České Budějovice Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16009976
- 003
- CZ-PrNML
- 005
- 20160415121431.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/mec.13374 $2 doi
- 024 7_
- $a 10.1111/mec.13374 $2 doi
- 035 __
- $a (PubMed)26340076
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a McDonough, Molly M $u Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA. National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
- 245 10
- $a Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region / $c MM. McDonough, R. Šumbera, V. Mazoch, AW. Ferguson, CD. Phillips, J. Bryja,
- 520 9_
- $a Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.
- 650 _2
- $a analýza polymorfismu délky amplifikovaných restrikčních fragmentů $7 D054458
- 650 _2
- $a rozšíření zvířat $7 D063147
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a klimatické změny $7 D057231
- 650 _2
- $a mitochondriální DNA $x genetika $7 D004272
- 650 12
- $a molekulární evoluce $7 D019143
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a populační genetika $7 D005828
- 650 _2
- $a zeměpis $7 D005843
- 650 _2
- $a Gerbillinae $x klasifikace $x genetika $7 D005849
- 650 _2
- $a haplotypy $7 D006239
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a fylogeografie $7 D058974
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 650 _2
- $a prostorová analýza $7 D062206
- 651 _2
- $a jižní Afrika $7 D000353
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Šumbera, Radim $u Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- 700 1_
- $a Mazoch, Vladimír $u Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- 700 1_
- $a Ferguson, Adam W $u Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
- 700 1_
- $a Phillips, Caleb D $u Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA. Research and Testing Laboratory, Lubbock, TX, USA.
- 700 1_
- $a Bryja, Josef $u Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic. Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
- 773 0_
- $w MED00006323 $t Molecular ecology $x 1365-294X $g Roč. 24, č. 20 (2015), s. 5248-66
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26340076 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160415121516 $b ABA008
- 999 __
- $a ok $b bmc $g 1113405 $s 934344
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 24 $c 20 $d 5248-66 $e 20151012 $i 1365-294X $m Molecular ecology $n Mol Ecol $x MED00006323
- LZP __
- $a Pubmed-20160408