-
Je něco špatně v tomto záznamu ?
Usage of neural network to predict aluminium oxide layer thickness
P. Michal, A. Vagaská, M. Gombár, J. Kmec, E. Spišák, D. Kučerka,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2001
Free Medical Journals
od 2000
PubMed Central
od 2000
Europe PubMed Central
od 2000
ProQuest Central
od 2012-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2012-01-03
Medline Complete (EBSCOhost)
od 2012-01-01
Health & Medicine (ProQuest)
od 2012-01-01
Wiley-Blackwell Open Access Titles
od 2000
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
25922850
DOI
10.1155/2015/253568
Knihovny.cz E-zdroje
- MeSH
- elektrolyty MeSH
- neuronové sítě * MeSH
- oxid hlinitý chemie MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16028450
- 003
- CZ-PrNML
- 005
- 20161031102104.0
- 007
- ta
- 008
- 161005s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1155/2015/253568 $2 doi
- 024 7_
- $a 10.1155/2015/253568 $2 doi
- 035 __
- $a (PubMed)25922850
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Michal, Peter $u Department of Mathematics, Informatics and Cybernetics, Faculty of Manufacturing Technologies with a Seat in Prešov, Technical University of Košice, Bayerova 1, 080 01 Prešov, Slovakia.
- 245 10
- $a Usage of neural network to predict aluminium oxide layer thickness / $c P. Michal, A. Vagaská, M. Gombár, J. Kmec, E. Spišák, D. Kučerka,
- 520 9_
- $a This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.
- 650 _2
- $a oxid hlinitý $x chemie $7 D000537
- 650 _2
- $a elektrolyty $7 D004573
- 650 _2
- $a teoretické modely $7 D008962
- 650 12
- $a neuronové sítě $7 D016571
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Vagaská, Alena $u Department of Mathematics, Informatics and Cybernetics, Faculty of Manufacturing Technologies with a Seat in Prešov, Technical University of Košice, Bayerova 1, 080 01 Prešov, Slovakia.
- 700 1_
- $a Gombár, Miroslav $u Department of Mechanical Engineering, Institute of Technology and Businesses in České Budějovice, Okružní 10, 37001 České Budějovice, Czech Republic.
- 700 1_
- $a Kmec, Ján $u Department of Mechanical Engineering, Institute of Technology and Businesses in České Budějovice, Okružní 10, 37001 České Budějovice, Czech Republic.
- 700 1_
- $a Spišák, Emil $u Department of Technologies and Materials, Faculty of Mechanical Engineering, Technical University of Košice, Mäsiarska 74, 042 00 Košice, Slovakia.
- 700 1_
- $a Kučerka, Daniel $u Department of Mechanical Engineering, Institute of Technology and Businesses in České Budějovice, Okružní 10, 37001 České Budějovice, Czech Republic.
- 773 0_
- $w MED00181094 $t TheScientificWorldJournal $x 1537-744X $g Roč. 2015, č. - (2015), s. 253568
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25922850 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161031102526 $b ABA008
- 999 __
- $a ok $b bmc $g 1166764 $s 953080
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 2015 $c - $d 253568 $e 20150402 $i 1537-744X $m TheScientificWorldJournal $n ScientificWorldJournal $x MED00181094
- LZP __
- $a Pubmed-20161005