-
Something wrong with this record ?
A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry
T. Zavřel, H. Knoop, R. Steuer, PR. Jones, J. Červený, M. Trtílek,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Autotrophic Processes MeSH
- Ethylenes biosynthesis MeSH
- Mass Spectrometry instrumentation methods MeSH
- Oxygen analysis MeSH
- Lyases metabolism MeSH
- Membranes, Artificial * MeSH
- Metabolic Networks and Pathways MeSH
- Recombination, Genetic genetics MeSH
- Light MeSH
- Synechocystis enzymology growth & development radiation effects MeSH
- Carbon analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The prediction of the world's future energy consumption and global climate change makes it desirable to identify new technologies to replace or augment fossil fuels by environmentally sustainable alternatives. One appealing sustainable energy concept is harvesting solar energy via photosynthesis coupled to conversion of CO2 into chemical feedstock and fuel. In this work, the production of ethylene, the most widely used petrochemical produced exclusively from fossil fuels, in the model cyanobacterium Synechocystis sp. PCC 6803 is studied. A novel instrumentation setup for quantitative monitoring of ethylene production using a combination of flat-panel photobioreactor coupled to a membrane-inlet mass spectrometer is introduced. Carbon partitioning is estimated using a quantitative model of cyanobacterial metabolism. The results show that ethylene is produced under a wide range of light intensities with an optimum at modest irradiances. The results allow production conditions to be optimized in a highly controlled setup.
Department of Life Sciences Imperial College London London United Kingdom
Institut für Theoretische Biologie Humboldt Universität zu Berlin Berlin Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000727
- 003
- CZ-PrNML
- 005
- 20170113114604.0
- 007
- ta
- 008
- 170103s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.biortech.2015.11.062 $2 doi
- 024 7_
- $a 10.1016/j.biortech.2015.11.062 $2 doi
- 035 __
- $a (PubMed)26708481
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Zavřel, Tomáš $u Department of Adaptive Biotechnologies, Global Change Research Centre, Academy of Science of the Czech Republic, Drásov, Czech Republic. Electronic address: zavrel.t@czechglobe.cz.
- 245 12
- $a A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry / $c T. Zavřel, H. Knoop, R. Steuer, PR. Jones, J. Červený, M. Trtílek,
- 520 9_
- $a The prediction of the world's future energy consumption and global climate change makes it desirable to identify new technologies to replace or augment fossil fuels by environmentally sustainable alternatives. One appealing sustainable energy concept is harvesting solar energy via photosynthesis coupled to conversion of CO2 into chemical feedstock and fuel. In this work, the production of ethylene, the most widely used petrochemical produced exclusively from fossil fuels, in the model cyanobacterium Synechocystis sp. PCC 6803 is studied. A novel instrumentation setup for quantitative monitoring of ethylene production using a combination of flat-panel photobioreactor coupled to a membrane-inlet mass spectrometer is introduced. Carbon partitioning is estimated using a quantitative model of cyanobacterial metabolism. The results show that ethylene is produced under a wide range of light intensities with an optimum at modest irradiances. The results allow production conditions to be optimized in a highly controlled setup.
- 650 _2
- $a autotrofní procesy $7 D052818
- 650 _2
- $a uhlík $x analýza $7 D002244
- 650 _2
- $a ethyleny $x biosyntéza $7 D005030
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a lyasy $x metabolismus $7 D008190
- 650 _2
- $a hmotnostní spektrometrie $x přístrojové vybavení $x metody $7 D013058
- 650 12
- $a membrány umělé $7 D008567
- 650 _2
- $a metabolické sítě a dráhy $7 D053858
- 650 _2
- $a kyslík $x analýza $7 D010100
- 650 _2
- $a rekombinace genetická $x genetika $7 D011995
- 650 _2
- $a Synechocystis $x enzymologie $x růst a vývoj $x účinky záření $7 D046939
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Knoop, Henning $u Institut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
- 700 1_
- $a Steuer, Ralf $u Institut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
- 700 1_
- $a Jones, Patrik R $u Department of Life Sciences, Imperial College London, London, United Kingdom.
- 700 1_
- $a Červený, Jan $u Department of Adaptive Biotechnologies, Global Change Research Centre, Academy of Science of the Czech Republic, Drásov, Czech Republic.
- 700 1_
- $a Trtílek, Martin $u Photon Systems Instruments, spol. s r.o., Drásov, Czech Republic.
- 773 0_
- $w MED00000780 $t Bioresource technology $x 1873-2976 $g Roč. 202, č. - (2016), s. 142-51
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26708481 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170113114704 $b ABA008
- 999 __
- $a ok $b bmc $g 1179867 $s 961294
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 202 $c - $d 142-51 $e 20151202 $i 1873-2976 $m Bioresource technology $n Bioresour Technol $x MED00000780
- LZP __
- $a Pubmed-20170103