-
Something wrong with this record ?
Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra
T. Evangelidis, S. Nerli, J. Nováček, AE. Brereton, PA. Karplus, RR. Dotas, V. Venditti, NG. Sgourakis, K. Tripsianes,
Language English Country Great Britain
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2015
Free Medical Journals
from 2010
Nature Open Access
from 2010-12-01
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2010-01-01
Open Access Digital Library
from 2015-01-01
Open Access Digital Library
from 2015-01-01
Medline Complete (EBSCOhost)
from 2012-11-01
Health & Medicine (ProQuest)
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
Springer Nature OA/Free Journals
from 2010-12-01
- MeSH
- Algorithms * MeSH
- Bacterial Proteins chemistry MeSH
- Protein Conformation, alpha-Helical MeSH
- Protein Conformation, beta-Strand MeSH
- Models, Molecular MeSH
- Nuclear Magnetic Resonance, Biomolecular methods MeSH
- Thermoanaerobacter chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Automated methods for NMR structure determination of proteins are continuously becoming more robust. However, current methods addressing larger, more complex targets rely on analyzing 6-10 complementary spectra, suggesting the need for alternative approaches. Here, we describe 4D-CHAINS/autoNOE-Rosetta, a complete pipeline for NOE-driven structure determination of medium- to larger-sized proteins. The 4D-CHAINS algorithm analyzes two 4D spectra recorded using a single, fully protonated protein sample in an iterative ansatz where common NOEs between different spin systems supplement conventional through-bond connectivities to establish assignments of sidechain and backbone resonances at high levels of completeness and with a minimum error rate. The 4D-CHAINS assignments are then used to guide automated assignment of long-range NOEs and structure refinement in autoNOE-Rosetta. Our results on four targets ranging in size from 15.5 to 27.3 kDa illustrate that the structures of proteins can be determined accurately and in an unsupervised manner in a matter of days.
Department of Chemistry Iowa State University 2438 Pammel Drive Ames IA 50011 USA
Department of Computer Science University of California Santa Cruz Santa Cruz CA 95064 USA
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18010193
- 003
- CZ-PrNML
- 005
- 20180404141901.0
- 007
- ta
- 008
- 180404s2018 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-017-02592-z $2 doi
- 035 __
- $a (PubMed)29374165
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Evangelidis, Thomas $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.
- 245 10
- $a Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra / $c T. Evangelidis, S. Nerli, J. Nováček, AE. Brereton, PA. Karplus, RR. Dotas, V. Venditti, NG. Sgourakis, K. Tripsianes,
- 520 9_
- $a Automated methods for NMR structure determination of proteins are continuously becoming more robust. However, current methods addressing larger, more complex targets rely on analyzing 6-10 complementary spectra, suggesting the need for alternative approaches. Here, we describe 4D-CHAINS/autoNOE-Rosetta, a complete pipeline for NOE-driven structure determination of medium- to larger-sized proteins. The 4D-CHAINS algorithm analyzes two 4D spectra recorded using a single, fully protonated protein sample in an iterative ansatz where common NOEs between different spin systems supplement conventional through-bond connectivities to establish assignments of sidechain and backbone resonances at high levels of completeness and with a minimum error rate. The 4D-CHAINS assignments are then used to guide automated assignment of long-range NOEs and structure refinement in autoNOE-Rosetta. Our results on four targets ranging in size from 15.5 to 27.3 kDa illustrate that the structures of proteins can be determined accurately and in an unsupervised manner in a matter of days.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a bakteriální proteiny $x chemie $7 D001426
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a nukleární magnetická rezonance biomolekulární $x metody $7 D019906
- 650 _2
- $a konformace proteinů, alfa-helix $7 D000072756
- 650 _2
- $a konformace proteinů, beta-řetězec $7 D000072757
- 650 _2
- $a Thermoanaerobacter $x chemie $7 D046968
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Nerli, Santrupti $u Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA. Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
- 700 1_
- $a Nováček, Jiří $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.
- 700 1_
- $a Brereton, Andrew E $u Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Bldg, Oregon State University, Corvallis, OR, 97331, USA.
- 700 1_
- $a Karplus, P Andrew $u Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Bldg, Oregon State University, Corvallis, OR, 97331, USA.
- 700 1_
- $a Dotas, Rochelle R $u Department of Chemistry, Iowa State University, 2438 Pammel Drive, Ames, IA, 50011, USA.
- 700 1_
- $a Venditti, Vincenzo $u Department of Chemistry, Iowa State University, 2438 Pammel Drive, Ames, IA, 50011, USA. Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
- 700 1_
- $a Sgourakis, Nikolaos G $u Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA, 95064, USA. nsgourak@ucsc.edu.
- 700 1_
- $a Tripsianes, Konstantinos $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic. kostas.tripsianes@ceitec.muni.cz.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 9, č. 1 (2018), s. 384
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29374165 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180404141941 $b ABA008
- 999 __
- $a ok $b bmc $g 1287678 $s 1007005
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 9 $c 1 $d 384 $e 20180126 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20180404