-
Je něco špatně v tomto záznamu ?
A critical comparison of topology-based pathway analysis methods
I. Ihnatova, V. Popovici, E. Budinska,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- databáze genetické MeSH
- datové soubory jako téma MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- stanovení celkové genové exprese metody MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
One of the aims of high-throughput gene/protein profiling experiments is the identification of biological processes altered between two or more conditions. Pathway analysis is an umbrella term for a multitude of computational approaches used for this purpose. While in the beginning pathway analysis relied on enrichment-based approaches, a newer generation of methods is now available, exploiting pathway topologies in addition to gene/protein expression levels. However, little effort has been invested in their critical assessment with respect to their performance in different experimental setups. Here, we assessed the performance of seven representative methods identifying differentially expressed pathways between two groups of interest based on gene expression data with prior knowledge of pathway topologies: SPIA, PRS, CePa, TAPPA, TopologyGSA, Clipper and DEGraph. We performed a number of controlled experiments that investigated their sensitivity to sample and pathway size, threshold-based filtering of differentially expressed genes, ability to detect target pathways, ability to exploit the topological information and the sensitivity to different pre-processing strategies. We also verified type I error rates and described the influence of overexpression of single genes, gene sets and topological motifs of various sizes on the detection of a pathway as differentially expressed. The results of our experiments demonstrate a wide variability of the tested methods. We provide a set of recommendations for an informed selection of the proper method for a given data analysis task.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18010195
- 003
- CZ-PrNML
- 005
- 20180404141902.0
- 007
- ta
- 008
- 180404s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0191154 $2 doi
- 035 __
- $a (PubMed)29370226
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Ihnatova, Ivana $u RECETOX, Faculty of Science, Masarykova Univerzita, Brno, Czech Republic. Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova Univerzita, Brno, Czech Republic.
- 245 12
- $a A critical comparison of topology-based pathway analysis methods / $c I. Ihnatova, V. Popovici, E. Budinska,
- 520 9_
- $a One of the aims of high-throughput gene/protein profiling experiments is the identification of biological processes altered between two or more conditions. Pathway analysis is an umbrella term for a multitude of computational approaches used for this purpose. While in the beginning pathway analysis relied on enrichment-based approaches, a newer generation of methods is now available, exploiting pathway topologies in addition to gene/protein expression levels. However, little effort has been invested in their critical assessment with respect to their performance in different experimental setups. Here, we assessed the performance of seven representative methods identifying differentially expressed pathways between two groups of interest based on gene expression data with prior knowledge of pathway topologies: SPIA, PRS, CePa, TAPPA, TopologyGSA, Clipper and DEGraph. We performed a number of controlled experiments that investigated their sensitivity to sample and pathway size, threshold-based filtering of differentially expressed genes, ability to detect target pathways, ability to exploit the topological information and the sensitivity to different pre-processing strategies. We also verified type I error rates and described the influence of overexpression of single genes, gene sets and topological motifs of various sizes on the detection of a pathway as differentially expressed. The results of our experiments demonstrate a wide variability of the tested methods. We provide a set of recommendations for an informed selection of the proper method for a given data analysis task.
- 650 _2
- $a databáze genetické $7 D030541
- 650 _2
- $a datové soubory jako téma $7 D066264
- 650 _2
- $a stanovení celkové genové exprese $x metody $7 D020869
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a metabolické sítě a dráhy $7 D053858
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Popovici, Vlad $u RECETOX, Faculty of Science, Masarykova Univerzita, Brno, Czech Republic.
- 700 1_
- $a Budinska, Eva $u RECETOX, Faculty of Science, Masarykova Univerzita, Brno, Czech Republic. Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova Univerzita, Brno, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 13, č. 1 (2018), s. e0191154
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29370226 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180404141942 $b ABA008
- 999 __
- $a ok $b bmc $g 1287680 $s 1007007
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 13 $c 1 $d e0191154 $e 20180125 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20180404