Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites

K. Valentová, K. Káňová, F. Di Meo, H. Pelantová, CS. Chambers, L. Rydlová, L. Petrásková, A. Křenková, J. Cvačka, P. Trouillas, V. Křen,

. 2017 ; 18 (11) : . [pub] 20171025

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033630

Sulfated quercetin derivatives are important authentic standards for metabolic studies. Quercetin-3'-O-sulfate, quercetin-4'-O-sulfate, and quercetin-3-O-sulfate as well as quercetin-di-O-sulfate mixture (quercetin-7,3'-di-O-sulfate, quercetin-7,4'-di-O-sulfate, and quercetin-3',4'-di-O-sulfate) were synthetized by arylsulfotransferase from Desulfitobacterium hafniense. Purified monosulfates and disulfates were fully characterized using MS and NMR and tested for their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⁺) and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging, Folin-Ciocalteau reduction (FCR), ferric reducing antioxidant power (FRAP), and anti-lipoperoxidant activities in rat liver microsomes damaged by tert-butylhydroperoxide. Although, as expected, the sulfated metabolites were usually less active than quercetin, they remained still effective antiradical and reducing agents. Quercetin-3'-O-sulfate was more efficient than quercetin-4'-O-sulfate in DPPH and FCR assays. In contrast, quercetin-4'-O-sulfate was the best ferric reductant and lipoperoxidation inhibitor. The capacity to scavenge ABTS+• and DMPD was comparable for all substances, except for disulfates, which were the most efficient. Quantum calculations and molecular dynamics simulations on membrane models supported rationalization of free radical scavenging and lipid peroxidation inhibition. These results clearly showed that individual metabolites of food bioactives can markedly differ in their biological activity. Therefore, a systematic and thorough investigation of all bioavailable metabolites with respect to native compounds is needed when evaluating food health benefits.

000      
00000naa a2200000 a 4500
001      
bmc18033630
003      
CZ-PrNML
005      
20181010124922.0
007      
ta
008      
181008s2017 sz f 000 00|eng||
009      
AR
024    7_
$a 10.3390/ijms18112231 $2 doi
035    __
$a (PubMed)29068411
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Valentová, Kateřina $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic. kata.valentova@email.cz.
245    10
$a Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites / $c K. Valentová, K. Káňová, F. Di Meo, H. Pelantová, CS. Chambers, L. Rydlová, L. Petrásková, A. Křenková, J. Cvačka, P. Trouillas, V. Křen,
520    9_
$a Sulfated quercetin derivatives are important authentic standards for metabolic studies. Quercetin-3'-O-sulfate, quercetin-4'-O-sulfate, and quercetin-3-O-sulfate as well as quercetin-di-O-sulfate mixture (quercetin-7,3'-di-O-sulfate, quercetin-7,4'-di-O-sulfate, and quercetin-3',4'-di-O-sulfate) were synthetized by arylsulfotransferase from Desulfitobacterium hafniense. Purified monosulfates and disulfates were fully characterized using MS and NMR and tested for their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⁺) and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging, Folin-Ciocalteau reduction (FCR), ferric reducing antioxidant power (FRAP), and anti-lipoperoxidant activities in rat liver microsomes damaged by tert-butylhydroperoxide. Although, as expected, the sulfated metabolites were usually less active than quercetin, they remained still effective antiradical and reducing agents. Quercetin-3'-O-sulfate was more efficient than quercetin-4'-O-sulfate in DPPH and FCR assays. In contrast, quercetin-4'-O-sulfate was the best ferric reductant and lipoperoxidation inhibitor. The capacity to scavenge ABTS+• and DMPD was comparable for all substances, except for disulfates, which were the most efficient. Quantum calculations and molecular dynamics simulations on membrane models supported rationalization of free radical scavenging and lipid peroxidation inhibition. These results clearly showed that individual metabolites of food bioactives can markedly differ in their biological activity. Therefore, a systematic and thorough investigation of all bioavailable metabolites with respect to native compounds is needed when evaluating food health benefits.
650    _2
$a antioxidancia $7 D000975
650    _2
$a arylsulfotransferasa $x metabolismus $7 D015239
650    _2
$a Desulfitobacterium $x enzymologie $7 D045858
650    _2
$a quercetin $x analogy a deriváty $x analýza $x chemická syntéza $x metabolismus $7 D011794
650    _2
$a vztahy mezi strukturou a aktivitou $7 D013329
650    _2
$a sírany $x analýza $x chemická syntéza $x metabolismus $7 D013431
655    _2
$a časopisecké články $7 D016428
700    1_
$a Káňová, Kristýna $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic. astriik@gmail.com.
700    1_
$a Di Meo, Florent $u INSERM U850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, F-87025 Limoges, France. florent.di-meo@unilim.fr.
700    1_
$a Pelantová, Helena $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic. pelantova@biomed.cas.cz.
700    1_
$a Chambers, Christopher Steven $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic. christopher.chambers@biomed.cas.cz.
700    1_
$a Rydlová, Lenka $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic. rydlova.l@email.cz.
700    1_
$a Petrásková, Lucie $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic. petraskova@biomed.cas.cz.
700    1_
$a Křenková, Alena $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic. alenka.petrickova@gmail.com.
700    1_
$a Cvačka, Josef $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic. cvacka@uochb.cas.cz.
700    1_
$a Trouillas, Patrick $u INSERM U850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, F-87025 Limoges, France. patrick.trouillas@unilim.fr. Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 12, CZ-77146 Olomouc, Czech Republic. patrick.trouillas@unilim.fr.
700    1_
$a Křen, Vladimír $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic. kren@biomed.cas.cz.
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 18, č. 11 (2017)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29068411 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181010125411 $b ABA008
999    __
$a ok $b bmc $g 1340950 $s 1030624
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 18 $c 11 $e 20171025 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...