-
Something wrong with this record ?
Unstable Inheritance of 45S rRNA Genes in Arabidopsis thaliana
FA. Rabanal, V. Nizhynska, T. Mandáková, PY. Novikova, MA. Lysak, R. Mott, M. Nordborg,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2011
Free Medical Journals
from 2011
Freely Accessible Science Journals
from 2011-06-01 to 2020
PubMed Central
from 2011
Europe PubMed Central
from 2011
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Oxford Journals Open Access Collection
from 2011-06-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
PubMed
28188182
DOI
10.1534/g3.117.040204
Knihovny.cz E-resources
- MeSH
- Arabidopsis genetics MeSH
- Genetic Loci MeSH
- Gene Dosage MeSH
- Inbreeding MeSH
- Crosses, Genetic MeSH
- Nucleolus Organizer Region genetics MeSH
- Recombination, Genetic genetics MeSH
- Repetitive Sequences, Nucleic Acid genetics MeSH
- RNA, Ribosomal genetics MeSH
- Genes, Plant * MeSH
- Inheritance Patterns genetics MeSH
- DNA Copy Number Variations genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The considerable genome size variation in Arabidopsis thaliana has been shown largely to be due to copy number variation (CNV) in 45S ribosomal RNA (rRNA) genes. Surprisingly, attempts to map this variation by means of genome-wide association studies (GWAS) failed to identify either of the two likely sources, namely the nucleolus organizer regions (NORs). Instead, GWAS implicated a trans-acting locus, as if rRNA gene CNV was a phenotype rather than a genotype. To explain these results, we investigated the inheritance and stability of rRNA gene copy number using the variety of genetic resources available in A. thaliana - F2 crosses, recombinant inbred lines, the multiparent advanced-generation inter-cross population, and mutation accumulation lines. Our results clearly show that rRNA gene CNV can be mapped to the NORs themselves, with both loci contributing equally to the variation. However, NOR size is unstably inherited, and dramatic copy number changes are visible already within tens of generations, which explains why it is not possible to map the NORs using GWAS. We did not find any evidence of trans-acting loci in crosses, which is also expected since changes due to such loci would take very many generations to manifest themselves. rRNA gene copy number is thus an interesting example of "missing heritability"-a trait that is heritable in pedigrees, but not in the general population.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Gregor Mendel Institute Austrian Academy of Sciences Vienna Biocenter 1030 Austria
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18034000
- 003
- CZ-PrNML
- 005
- 20181026105235.0
- 007
- ta
- 008
- 181008s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1534/g3.117.040204 $2 doi
- 035 __
- $a (PubMed)28188182
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Rabanal, Fernando A $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Austria.
- 245 10
- $a Unstable Inheritance of 45S rRNA Genes in Arabidopsis thaliana / $c FA. Rabanal, V. Nizhynska, T. Mandáková, PY. Novikova, MA. Lysak, R. Mott, M. Nordborg,
- 520 9_
- $a The considerable genome size variation in Arabidopsis thaliana has been shown largely to be due to copy number variation (CNV) in 45S ribosomal RNA (rRNA) genes. Surprisingly, attempts to map this variation by means of genome-wide association studies (GWAS) failed to identify either of the two likely sources, namely the nucleolus organizer regions (NORs). Instead, GWAS implicated a trans-acting locus, as if rRNA gene CNV was a phenotype rather than a genotype. To explain these results, we investigated the inheritance and stability of rRNA gene copy number using the variety of genetic resources available in A. thaliana - F2 crosses, recombinant inbred lines, the multiparent advanced-generation inter-cross population, and mutation accumulation lines. Our results clearly show that rRNA gene CNV can be mapped to the NORs themselves, with both loci contributing equally to the variation. However, NOR size is unstably inherited, and dramatic copy number changes are visible already within tens of generations, which explains why it is not possible to map the NORs using GWAS. We did not find any evidence of trans-acting loci in crosses, which is also expected since changes due to such loci would take very many generations to manifest themselves. rRNA gene copy number is thus an interesting example of "missing heritability"-a trait that is heritable in pedigrees, but not in the general population.
- 650 _2
- $a Arabidopsis $x genetika $7 D017360
- 650 _2
- $a křížení genetické $7 D003433
- 650 _2
- $a variabilita počtu kopií segmentů DNA $x genetika $7 D056915
- 650 _2
- $a genová dávka $7 D018628
- 650 12
- $a rostlinné geny $7 D017343
- 650 _2
- $a genetické lokusy $7 D056426
- 650 _2
- $a inbreeding $7 D007178
- 650 _2
- $a typy dědičnosti $x genetika $7 D040582
- 650 _2
- $a organizátor jadérka $x genetika $7 D009697
- 650 _2
- $a RNA ribozomální $x genetika $7 D012335
- 650 _2
- $a rekombinace genetická $x genetika $7 D011995
- 650 _2
- $a repetitivní sekvence nukleových kyselin $x genetika $7 D012091
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Nizhynska, Viktoria $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Austria.
- 700 1_
- $a Mandáková, Terezie $u Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic.
- 700 1_
- $a Novikova, Polina Yu $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Austria.
- 700 1_
- $a Lysak, Martin A $u Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic.
- 700 1_
- $a Mott, Richard $u University College London Genetics Institute, WC1E 6BT, UK.
- 700 1_
- $a Nordborg, Magnus $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Austria magnus.nordborg@gmi.oeaw.ac.at.
- 773 0_
- $w MED00188068 $t G3 (Bethesda, Md.) $x 2160-1836 $g Roč. 7, č. 4 (2017), s. 1201-1209
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28188182 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181026105746 $b ABA008
- 999 __
- $a ok $b bmc $g 1339685 $s 1030994
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 7 $c 4 $d 1201-1209 $e 20170403 $i 2160-1836 $m G3 $n G3 (Bethesda) $x MED00188068
- LZP __
- $a Pubmed-20181008