• Je něco špatně v tomto záznamu ?

Impact of isotropic constitutive descriptions on the predicted peak wall stress in abdominal aortic aneurysms

V. Man, S. Polzer, TC. Gasser, T. Novotny, J. Bursa,

. 2018 ; 53 (-) : 49-57.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19000939

Biomechanics-based assessment of Abdominal Aortic Aneurysm (AAA) rupture risk has gained considerable scientific and clinical momentum. However, computation of peak wall stress (PWS) using state-of-the-art finite element models is time demanding. This study investigates which features of the constitutive description of AAA wall are decisive for achieving acceptable stress predictions in it. Influence of five different isotropic constitutive descriptions of AAA wall is tested; models reflect realistic non-linear, artificially stiff non-linear, or artificially stiff pseudo-linear constitutive descriptions of AAA wall. Influence of the AAA wall model is tested on idealized (n=4) and patient-specific (n=16) AAA geometries. Wall stress computations consider a (hypothetical) load-free configuration and include residual stresses homogenizing the stresses across the wall. Wall stress differences amongst the different descriptions were statistically analyzed. When the qualitatively similar non-linear response of the AAA wall with low initial stiffness and subsequent strain stiffening was taken into consideration, wall stress (and PWS) predictions did not change significantly. Keeping this non-linear feature when using an artificially stiff wall can save up to 30% of the computational time, without significant change in PWS. In contrast, a stiff pseudo-linear elastic model may underestimate the PWS and is not reliable for AAA wall stress computations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000939
003      
CZ-PrNML
005      
20190122123744.0
007      
ta
008      
190107s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.medengphy.2018.01.002 $2 doi
035    __
$a (PubMed)29402733
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Man, V $u Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic. Electronic address: manvojtech@email.cz.
245    10
$a Impact of isotropic constitutive descriptions on the predicted peak wall stress in abdominal aortic aneurysms / $c V. Man, S. Polzer, TC. Gasser, T. Novotny, J. Bursa,
520    9_
$a Biomechanics-based assessment of Abdominal Aortic Aneurysm (AAA) rupture risk has gained considerable scientific and clinical momentum. However, computation of peak wall stress (PWS) using state-of-the-art finite element models is time demanding. This study investigates which features of the constitutive description of AAA wall are decisive for achieving acceptable stress predictions in it. Influence of five different isotropic constitutive descriptions of AAA wall is tested; models reflect realistic non-linear, artificially stiff non-linear, or artificially stiff pseudo-linear constitutive descriptions of AAA wall. Influence of the AAA wall model is tested on idealized (n=4) and patient-specific (n=16) AAA geometries. Wall stress computations consider a (hypothetical) load-free configuration and include residual stresses homogenizing the stresses across the wall. Wall stress differences amongst the different descriptions were statistically analyzed. When the qualitatively similar non-linear response of the AAA wall with low initial stiffness and subsequent strain stiffening was taken into consideration, wall stress (and PWS) predictions did not change significantly. Keeping this non-linear feature when using an artificially stiff wall can save up to 30% of the computational time, without significant change in PWS. In contrast, a stiff pseudo-linear elastic model may underestimate the PWS and is not reliable for AAA wall stress computations.
650    12
$a aneurysma břišní aorty $x patologie $7 D017544
650    _2
$a biomechanika $7 D001696
650    12
$a analýza metodou konečných prvků $7 D020342
650    _2
$a lidé $7 D006801
650    _2
$a modely kardiovaskulární $7 D008955
650    12
$a mechanický stres $7 D013314
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Polzer, S $u Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Gasser, T C $u KTH Solid Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden.
700    1_
$a Novotny, T $u 2nd Department of Surgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Bursa, J $u Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic.
773    0_
$w MED00008431 $t Medical engineering & physics $x 1873-4030 $g Roč. 53, č. - (2018), s. 49-57
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29402733 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190122124004 $b ABA008
999    __
$a ok $b bmc $g 1364908 $s 1039062
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 53 $c - $d 49-57 $i 1873-4030 $m Medical engineering & physics $n Med Eng Phys $x MED00008431
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...