Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity

A. de Pierrefeu, T. Löfstedt, C. Laidi, F. Hadj-Selem, J. Bourgin, T. Hajek, F. Spaniel, M. Kolenic, P. Ciuciu, N. Hamdani, M. Leboyer, T. Fovet, R. Jardri, J. Houenou, E. Duchesnay,

. 2018 ; 138 (6) : 571-580. [pub] 20180921

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19045228

Grantová podpora
NV16-32696A MZ0 CEP - Centrální evidence projektů

OBJECTIVE: Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross-sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication's effect. These elements cast doubt on previous findings' reproducibility. METHOD: We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross-site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first-episode patients. RESULTS: Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first-episode psychosis patients (73% accuracy). CONCLUSION: These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045228
003      
CZ-PrNML
005      
20220509175653.0
007      
ta
008      
200109s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1111/acps.12964 $2 doi
035    __
$a (PubMed)30242828
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a de Pierrefeu, A $u NeuroSpin, CEA, Gif-sur-Yvette, France.
245    10
$a Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity / $c A. de Pierrefeu, T. Löfstedt, C. Laidi, F. Hadj-Selem, J. Bourgin, T. Hajek, F. Spaniel, M. Kolenic, P. Ciuciu, N. Hamdani, M. Leboyer, T. Fovet, R. Jardri, J. Houenou, E. Duchesnay,
520    9_
$a OBJECTIVE: Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross-sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication's effect. These elements cast doubt on previous findings' reproducibility. METHOD: We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross-site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first-episode patients. RESULTS: Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first-episode psychosis patients (73% accuracy). CONCLUSION: These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.
650    _2
$a dospělí $7 D000328
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a šedá hmota $x diagnostické zobrazování $x patologie $7 D066128
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x normy $7 D007091
650    12
$a strojové učení $7 D000069550
650    _2
$a magnetická rezonanční tomografie $x normy $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a schizofrenie $x diagnostické zobrazování $x patologie $x patofyziologie $7 D012559
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a stupeň závažnosti nemoci $7 D012720
655    _2
$a časopisecké články $7 D016428
655    _2
$a multicentrická studie $7 D016448
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Löfstedt, T $u Department of Radiation Sciences, Umeå University, Umeå, Sweden.
700    1_
$a Laidi, C $u NeuroSpin, CEA, Gif-sur-Yvette, France. Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France. Fondation Fondamental, Créteil, France. Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France.
700    1_
$a Hadj-Selem, F $u Energy Transition Institute: VeDeCoM, Versailles, France.
700    1_
$a Bourgin, J $u Department of Psychiatry, Louis-Mourier Hospital, AP-HP, Colombes, France. INSERM U894, Centre for Psychiatry and Neurosciences, Paris, France.
700    1_
$a Hajek, T $u Department of Psychiatry, Dalhousie University, Halifax, NS, Canada. National Institute of Mental Health, Klecany, Czech Republic.
700    1_
$a Spaniel, F $u National Institute of Mental Health, Klecany, Czech Republic.
700    1_
$a Kolenic, M $u National Institute of Mental Health, Klecany, Czech Republic.
700    1_
$a Ciuciu, P $u NeuroSpin, CEA, Gif-sur-Yvette, France. INRIA, CEA, Parietal team, University of Paris-Saclay, Lille, France.
700    1_
$a Hamdani, N $u Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France. Fondation Fondamental, Créteil, France. Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France.
700    1_
$a Leboyer, M $u Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France. Fondation Fondamental, Créteil, France. Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France.
700    1_
$a Fovet, T $u Laboratoire de Sciences Cognitives et Sciences Affectives (SCALab-PsyCHIC), CNRS UMR 9193, University of Lille, Lille, France. Pôle de Psychiatrie, Unité CURE, CHU Lille, Lille, France.
700    1_
$a Jardri, R $u INRIA, CEA, Parietal team, University of Paris-Saclay, Lille, France. Laboratoire de Sciences Cognitives et Sciences Affectives (SCALab-PsyCHIC), CNRS UMR 9193, University of Lille, Lille, France. Pôle de Psychiatrie, Unité CURE, CHU Lille, Lille, France.
700    1_
$a Houenou, J $u NeuroSpin, CEA, Gif-sur-Yvette, France. Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France. Fondation Fondamental, Créteil, France. Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France.
700    1_
$a Duchesnay, E $u NeuroSpin, CEA, Gif-sur-Yvette, France.
773    0_
$w MED00009053 $t Acta psychiatrica Scandinavica $x 1600-0447 $g Roč. 138, č. 6 (2018), s. 571-580
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20220509175651 $b ABA008
999    __
$a ok $b bmc $g 1483497 $s 1083901
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 138 $c 6 $d 571-580 $e 20180921 $i 1600-0447 $m Acta psychiatrica Scandinavica $n Acta Psychiatr Scand $x MED00009053
GRA    __
$a NV16-32696A $p MZ0
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...