-
Something wrong with this record ?
Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion
O. Tolde, A. Gandalovičová, A. Křížová, P. Veselý, R. Chmelík, D. Rosel, J. Brábek,
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2011
Free Medical Journals
from 2011
Nature Open Access
from 2011-12-01
PubMed Central
from 2011
Europe PubMed Central
from 2011
ProQuest Central
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Health & Medicine (ProQuest)
from 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
Springer Nature OA/Free Journals
from 2011-12-01
- MeSH
- Cell Membrane metabolism MeSH
- Cell Culture Techniques methods MeSH
- Fibrosarcoma diagnostic imaging pathology MeSH
- Holography instrumentation methods MeSH
- Intravital Microscopy instrumentation methods MeSH
- Neoplasm Invasiveness diagnostic imaging pathology MeSH
- Collagen metabolism MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Cell Movement * MeSH
- Pseudopodia metabolism MeSH
- Imaging, Three-Dimensional instrumentation methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Observation and analysis of cancer cell behaviour in 3D environment is essential for full understanding of the mechanisms of cancer cell invasion. However, label-free imaging of live cells in 3D conditions is optically more challenging than in 2D. Quantitative phase imaging provided by coherence controlled holographic microscopy produces images with enhanced information compared to ordinary light microscopy and, due to inherent coherence gate effect, enables observation of live cancer cells' activity even in scattering milieu such as the 3D collagen matrix. Exploiting the dynamic phase differences method, we for the first time describe dynamics of differences in cell mass distribution in 3D migrating mesenchymal and amoeboid cancer cells, and also demonstrate that certain features are shared by both invasion modes. We found that amoeboid fibrosarcoma cells' membrane blebbing is enhanced upon constriction and is also occasionally present in mesenchymally invading cells around constricted nuclei. Further, we demonstrate that both leading protrusions and leading pseudopods of invading fibrosarcoma cells are defined by higher cell mass density. In addition, we directly document bundling of collagen fibres by protrusions of mesenchymal fibrosarcoma cells. Thus, such a non-invasive microscopy offers a novel insight into cellular events during 3D invasion.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045304
- 003
- CZ-PrNML
- 005
- 20220119150121.0
- 007
- ta
- 008
- 200109s2018 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-018-30408-7 $2 doi
- 035 __
- $a (PubMed)30104699
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Tolde, Ondřej $u Department of Cell Biology, Charles University, Viničná 7, Prague, Czech Republic. Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42, Vestec u Prahy, Czech Republic.
- 245 10
- $a Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion / $c O. Tolde, A. Gandalovičová, A. Křížová, P. Veselý, R. Chmelík, D. Rosel, J. Brábek,
- 520 9_
- $a Observation and analysis of cancer cell behaviour in 3D environment is essential for full understanding of the mechanisms of cancer cell invasion. However, label-free imaging of live cells in 3D conditions is optically more challenging than in 2D. Quantitative phase imaging provided by coherence controlled holographic microscopy produces images with enhanced information compared to ordinary light microscopy and, due to inherent coherence gate effect, enables observation of live cancer cells' activity even in scattering milieu such as the 3D collagen matrix. Exploiting the dynamic phase differences method, we for the first time describe dynamics of differences in cell mass distribution in 3D migrating mesenchymal and amoeboid cancer cells, and also demonstrate that certain features are shared by both invasion modes. We found that amoeboid fibrosarcoma cells' membrane blebbing is enhanced upon constriction and is also occasionally present in mesenchymally invading cells around constricted nuclei. Further, we demonstrate that both leading protrusions and leading pseudopods of invading fibrosarcoma cells are defined by higher cell mass density. In addition, we directly document bundling of collagen fibres by protrusions of mesenchymal fibrosarcoma cells. Thus, such a non-invasive microscopy offers a novel insight into cellular events during 3D invasion.
- 650 _2
- $a buněčné kultury $x metody $7 D018929
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 12
- $a pohyb buněk $7 D002465
- 650 _2
- $a kolagen $x metabolismus $7 D003094
- 650 _2
- $a fibrosarkom $x diagnostické zobrazování $x patologie $7 D005354
- 650 _2
- $a holografie $x přístrojové vybavení $x metody $7 D006696
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a zobrazování trojrozměrné $x přístrojové vybavení $x metody $7 D021621
- 650 _2
- $a intravitální mikroskopie $x přístrojové vybavení $x metody $7 D000069416
- 650 _2
- $a invazivní růst nádoru $x diagnostické zobrazování $x patologie $7 D009361
- 650 _2
- $a pseudopodia $x metabolismus $7 D011554
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Gandalovičová, Aneta $u Department of Cell Biology, Charles University, Viničná 7, Prague, Czech Republic. Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42, Vestec u Prahy, Czech Republic.
- 700 1_
- $a Křížová, Aneta $u Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic. Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno, 616 00, Czech Republic.
- 700 1_
- $a Veselý, Pavel $u Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic.
- 700 1_
- $a Chmelík, Radim $u Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic. Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno, 616 00, Czech Republic.
- 700 1_
- $a Rosel, Daniel $u Department of Cell Biology, Charles University, Viničná 7, Prague, Czech Republic. Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42, Vestec u Prahy, Czech Republic.
- 700 1_
- $a Brábek, Jan, $u Department of Cell Biology, Charles University, Viničná 7, Prague, Czech Republic. jan.brabek@natur.cuni.cz. Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42, Vestec u Prahy, Czech Republic. jan.brabek@natur.cuni.cz. $d 1973- $7 xx0268678
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 8, č. 1 (2018), s. 12020
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30104699 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20220119150117 $b ABA008
- 999 __
- $a ok $b bmc $g 1483573 $s 1083977
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 8 $c 1 $d 12020 $e 20180813 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20200109