• Something wrong with this record ?

Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot

P. Čížek, J. Faigl,

. 2019 ; 14 (4) : 046002. [pub] 20190503

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

In this paper, we propose an integrated biologically inspired visual collision avoidance approach that is deployed on a real hexapod walking robot. The proposed approach is based on the Lobula giant movement detector (LGMD), a neural network for looming stimuli detection that can be found in visual pathways of insects, such as locusts. Although a superior performance of the LGMD in the detection of intercepting objects has been shown in many collision avoiding scenarios, its direct integration with motion control is an unexplored topic. In our work, we propose to utilize the LGMD neural network for visual interception detection with a central pattern generator (CPG) for locomotion control of a hexapod walking robot that are combined in the controller based on the long short-term memory (LSTM) recurrent neural network. Moreover, we propose self-supervised learning of the integrated controller to autonomously find a suitable setting of the system using a realistic robotic simulator. Thus, individual neural networks are trained in a simulation to enhance the performance of the controller that is then experimentally verified with a real hexapod walking robot in both collision and interception avoidance scenario and navigation in a cluttered environment.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006450
003      
CZ-PrNML
005      
20200526111424.0
007      
ta
008      
200511s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1748-3190/ab1a9c $2 doi
035    __
$a (PubMed)30995613
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Čížek, Petr $u Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague, Czech Republic.
245    10
$a Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot / $c P. Čížek, J. Faigl,
520    9_
$a In this paper, we propose an integrated biologically inspired visual collision avoidance approach that is deployed on a real hexapod walking robot. The proposed approach is based on the Lobula giant movement detector (LGMD), a neural network for looming stimuli detection that can be found in visual pathways of insects, such as locusts. Although a superior performance of the LGMD in the detection of intercepting objects has been shown in many collision avoiding scenarios, its direct integration with motion control is an unexplored topic. In our work, we propose to utilize the LGMD neural network for visual interception detection with a central pattern generator (CPG) for locomotion control of a hexapod walking robot that are combined in the controller based on the long short-term memory (LSTM) recurrent neural network. Moreover, we propose self-supervised learning of the integrated controller to autonomously find a suitable setting of the system using a realistic robotic simulator. Thus, individual neural networks are trained in a simulation to enhance the performance of the controller that is then experimentally verified with a real hexapod walking robot in both collision and interception avoidance scenario and navigation in a cluttered environment.
650    _2
$a zvířata $7 D000818
650    _2
$a učení vyhýbat se $x fyziologie $7 D001362
650    _2
$a chování zvířat $x fyziologie $7 D001522
650    _2
$a kobylky $x fyziologie $7 D006110
650    _2
$a neuronové sítě $7 D016571
650    _2
$a robotika $x přístrojové vybavení $7 D012371
650    _2
$a řízené strojové učení $7 D000069553
650    _2
$a chůze $x fyziologie $7 D016138
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Faigl, Jan
773    0_
$w MED00200575 $t Bioinspiration & biomimetics $x 1748-3190 $g Roč. 14, č. 4 (2019), s. 046002
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30995613 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200526111420 $b ABA008
999    __
$a ok $b bmc $g 1525308 $s 1096506
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 14 $c 4 $d 046002 $e 20190503 $i 1748-3190 $m Bioinspiration & biomimetics $n Bioinspir Biomim $x MED00200575
LZP    __
$a Pubmed-20200511

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...