-
Je něco špatně v tomto záznamu ?
Encapsulation mechanisms and structural studies of GRM2 bacterial microcompartment particles
G. Kalnins, EE. Cesle, J. Jansons, J. Liepins, A. Filimonenko, K. Tars,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2015
Free Medical Journals
od 2010
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2019-01-01
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
Medline Complete (EBSCOhost)
od 2012-11-01
Health & Medicine (ProQuest)
od 2019-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
Springer Nature OA/Free Journals
od 2010-12-01
Springer Nature - nature.com Journals - Fully Open Access
od 2010-12-01
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- cholin metabolismus MeSH
- elektronová kryomikroskopie MeSH
- genetické lokusy MeSH
- Klebsiella pneumoniae cytologie enzymologie genetika ultrastruktura MeSH
- lyasy genetika metabolismus MeSH
- organely enzymologie ultrastruktura MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- syntetická biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bacterial microcompartments (BMCs) are prokaryotic organelles consisting of a protein shell and an encapsulated enzymatic core. BMCs are involved in several biochemical processes, such as choline, glycerol and ethanolamine degradation and carbon fixation. Since non-native enzymes can also be encapsulated in BMCs, an improved understanding of BMC shell assembly and encapsulation processes could be useful for synthetic biology applications. Here we report the isolation and recombinant expression of BMC structural genes from the Klebsiella pneumoniae GRM2 locus, the investigation of mechanisms behind encapsulation of the core enzymes, and the characterization of shell particles by cryo-EM. We conclude that the enzymatic core is encapsulated in a hierarchical manner and that the CutC choline lyase may play a secondary role as an adaptor protein. We also present a cryo-EM structure of a pT = 4 quasi-symmetric icosahedral shell particle at 3.3 Å resolution, and demonstrate variability among the minor shell forms.
Central European Institute of Technology Masaryk University Kamenice 753 5 62500 Brno Czech Republic
Institute of Microbiology and Biotechnology University of Latvia Jelgavas 1 Riga 1004 Latvia
Latvian Biomedical Research and Study Centre Ratsupites 1 Riga 1067 Latvia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023225
- 003
- CZ-PrNML
- 005
- 20201214125527.0
- 007
- ta
- 008
- 201125s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-019-14205-y $2 doi
- 035 __
- $a (PubMed)31959751
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Kalnins, Gints $u Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia. gints@biomed.lu.lv.
- 245 10
- $a Encapsulation mechanisms and structural studies of GRM2 bacterial microcompartment particles / $c G. Kalnins, EE. Cesle, J. Jansons, J. Liepins, A. Filimonenko, K. Tars,
- 520 9_
- $a Bacterial microcompartments (BMCs) are prokaryotic organelles consisting of a protein shell and an encapsulated enzymatic core. BMCs are involved in several biochemical processes, such as choline, glycerol and ethanolamine degradation and carbon fixation. Since non-native enzymes can also be encapsulated in BMCs, an improved understanding of BMC shell assembly and encapsulation processes could be useful for synthetic biology applications. Here we report the isolation and recombinant expression of BMC structural genes from the Klebsiella pneumoniae GRM2 locus, the investigation of mechanisms behind encapsulation of the core enzymes, and the characterization of shell particles by cryo-EM. We conclude that the enzymatic core is encapsulated in a hierarchical manner and that the CutC choline lyase may play a secondary role as an adaptor protein. We also present a cryo-EM structure of a pT = 4 quasi-symmetric icosahedral shell particle at 3.3 Å resolution, and demonstrate variability among the minor shell forms.
- 650 _2
- $a bakteriální proteiny $x genetika $x metabolismus $7 D001426
- 650 _2
- $a cholin $x metabolismus $7 D002794
- 650 _2
- $a elektronová kryomikroskopie $7 D020285
- 650 _2
- $a genetické lokusy $7 D056426
- 650 _2
- $a Klebsiella pneumoniae $x cytologie $x enzymologie $x genetika $x ultrastruktura $7 D007711
- 650 _2
- $a lyasy $x genetika $x metabolismus $7 D008190
- 650 _2
- $a organely $x enzymologie $x ultrastruktura $7 D015388
- 650 _2
- $a rekombinantní proteiny $x genetika $x metabolismus $7 D011994
- 650 _2
- $a syntetická biologie $7 D058615
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Cesle, Eva-Emilija $u Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia.
- 700 1_
- $a Jansons, Juris $u Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia.
- 700 1_
- $a Liepins, Janis $u Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas 1, Riga, 1004, Latvia.
- 700 1_
- $a Filimonenko, Anatolij $u Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
- 700 1_
- $a Tars, Kaspars $u Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia. University of Latvia, Jelgavas 1, Riga, 1004, Latvia.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 11, č. 1 (2020), s. 388
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31959751 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125527 $b ABA008
- 999 __
- $a ok $b bmc $g 1595544 $s 1113901
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 11 $c 1 $d 388 $e 20200120 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20201125