Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses

K. Macháčková, K. Mlčochová, P. Potalitsyn, K. Hanková, O. Socha, M. Buděšínský, A. Muždalo, M. Lepšík, M. Černeková, J. Radosavljević, M. Fábry, K. Mitrová, M. Chrudinová, J. Lin, Y. Yurenko, P. Hobza, I. Selicharová, L. Žáková, J. Jiráček,

. 2019 ; 294 (46) : 17371-17382. [pub] 20190926

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023483

Grantová podpora
MR/K000179/1 Medical Research Council - United Kingdom
MR/R009066/1 Medical Research Council - United Kingdom

Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58-IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023483
003      
CZ-PrNML
005      
20201214130146.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1074/jbc.RA119.010072 $2 doi
035    __
$a (PubMed)31558604
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Macháčková, Kateřina $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
245    10
$a Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses / $c K. Macháčková, K. Mlčochová, P. Potalitsyn, K. Hanková, O. Socha, M. Buděšínský, A. Muždalo, M. Lepšík, M. Černeková, J. Radosavljević, M. Fábry, K. Mitrová, M. Chrudinová, J. Lin, Y. Yurenko, P. Hobza, I. Selicharová, L. Žáková, J. Jiráček,
520    9_
$a Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58-IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.
650    _2
$a mnohočetné abnormality $x genetika $7 D000015
650    _2
$a sekvence aminokyselin $x genetika $7 D000595
650    _2
$a vazebná místa $x genetika $7 D001665
650    _2
$a poruchy růstu $x genetika $7 D006130
650    _2
$a lidé $7 D006801
650    _2
$a inzulin $x analogy a deriváty $x chemická syntéza $x chemie $x genetika $7 D007328
650    _2
$a insulinu podobný růstový faktor I $x chemie $x genetika $7 D007334
650    _2
$a insulinu podobný růstový faktor II $x chemie $x genetika $7 D007335
650    _2
$a mutace $x genetika $7 D009154
650    _2
$a nukleární magnetická rezonance biomolekulární $7 D019906
650    _2
$a vazba proteinů $x genetika $7 D011485
650    _2
$a proteinové domény $x genetika $7 D000072417
650    _2
$a receptor IGF typ 1 $x chemie $x genetika $7 D017526
650    _2
$a receptor inzulinu $x chemie $x genetika $7 D011972
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mlčochová, Květoslava $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Potalitsyn, Pavlo $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Hanková, Kateřina $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Socha, Ondřej $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Buděšínský, Miloš $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Muždalo, Anja $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Lepšík, Martin $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Černeková, Michaela $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Radosavljević, Jelena $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Fábry, Milan $u Institute of Molecular Genetics, Czech Academy of Sciences, 166 37 Prague 6, Czech Republic.
700    1_
$a Mitrová, Katarína $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Chrudinová, Martina $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Lin, Jingjing $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Yurenko, Yevgen $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Hobza, Pavel $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Selicharová, Irena $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Žáková, Lenka $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
700    1_
$a Jiráček, Jiří $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic jiracek@uochb.cas.cz.
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 294, č. 46 (2019), s. 17371-17382
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31558604 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214130145 $b ABA008
999    __
$a ok $b bmc $g 1595802 $s 1114159
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 294 $c 46 $d 17371-17382 $e 20190926 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
GRA    __
$a MR/K000179/1 $p Medical Research Council $2 United Kingdom
GRA    __
$a MR/R009066/1 $p Medical Research Council $2 United Kingdom
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...