Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome

O. Bereshchenko, O. Lo Re, F. Nikulenkov, S. Flamini, J. Kotaskova, T. Mazza, MM. Le Pannérer, M. Buschbeck, C. Giallongo, G. Palumbo, G. Li Volti, V. Pazienza, L. Cervinek, C. Riccardi, L. Krejci, S. Pospisilova, AF. Stewart, M. Vinciguerra,

. 2019 ; 11 (1) : 121. [pub] 20190822

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023736

Grantová podpora
206292/E/17/Z Wellcome Trust - United Kingdom

BACKGROUND: Epigenetic regulation is important in hematopoiesis, but the involvement of histone variants is poorly understood. Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis. MacroH2A1.1 is a histone H2A variant that negatively correlates with the self-renewal capacity of embryonic, adult, and cancer stem cells. MacroH2A1.1 is a target of the frequent U2AF1 S34F mutation in MDS. The role of macroH2A1.1 in hematopoiesis is unclear. RESULTS: MacroH2A1.1 mRNA levels are significantly decreased in patients with low-risk MDS presenting with chromosomal 5q deletion and myeloid cytopenias and tend to be decreased in MDS patients carrying the U2AF1 S34F mutation. Using an innovative mouse allele lacking the macroH2A1.1 alternatively spliced exon, we investigated whether macroH2A1.1 regulates HSC homeostasis and differentiation. The lack of macroH2A1.1 decreased while macroH2A1.1 haploinsufficiency increased HSC frequency upon irradiation. Moreover, bone marrow transplantation experiments showed that both deficiency and haploinsufficiency of macroH2A1.1 resulted in enhanced HSC differentiation along the myeloid lineage. Finally, RNA-sequencing analysis implicated macroH2A1.1-mediated regulation of ribosomal gene expression in HSC homeostasis. CONCLUSIONS: Together, our findings suggest a new epigenetic process contributing to hematopoiesis regulation. By combining clinical data with a discrete mutant mouse model and in vitro studies of human and mouse cells, we identify macroH2A1.1 as a key player in the cellular and molecular features of MDS. These data justify the exploration of macroH2A1.1 and associated proteins as therapeutic targets in hematological malignancies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023736
003      
CZ-PrNML
005      
20201214131014.0
007      
ta
008      
201125s2019 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13148-019-0724-z $2 doi
035    __
$a (PubMed)31439048
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Bereshchenko, Oxana $u Department of Medicine, Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy. oxana.bereshchenko@unipg.it.
245    10
$a Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome / $c O. Bereshchenko, O. Lo Re, F. Nikulenkov, S. Flamini, J. Kotaskova, T. Mazza, MM. Le Pannérer, M. Buschbeck, C. Giallongo, G. Palumbo, G. Li Volti, V. Pazienza, L. Cervinek, C. Riccardi, L. Krejci, S. Pospisilova, AF. Stewart, M. Vinciguerra,
520    9_
$a BACKGROUND: Epigenetic regulation is important in hematopoiesis, but the involvement of histone variants is poorly understood. Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis. MacroH2A1.1 is a histone H2A variant that negatively correlates with the self-renewal capacity of embryonic, adult, and cancer stem cells. MacroH2A1.1 is a target of the frequent U2AF1 S34F mutation in MDS. The role of macroH2A1.1 in hematopoiesis is unclear. RESULTS: MacroH2A1.1 mRNA levels are significantly decreased in patients with low-risk MDS presenting with chromosomal 5q deletion and myeloid cytopenias and tend to be decreased in MDS patients carrying the U2AF1 S34F mutation. Using an innovative mouse allele lacking the macroH2A1.1 alternatively spliced exon, we investigated whether macroH2A1.1 regulates HSC homeostasis and differentiation. The lack of macroH2A1.1 decreased while macroH2A1.1 haploinsufficiency increased HSC frequency upon irradiation. Moreover, bone marrow transplantation experiments showed that both deficiency and haploinsufficiency of macroH2A1.1 resulted in enhanced HSC differentiation along the myeloid lineage. Finally, RNA-sequencing analysis implicated macroH2A1.1-mediated regulation of ribosomal gene expression in HSC homeostasis. CONCLUSIONS: Together, our findings suggest a new epigenetic process contributing to hematopoiesis regulation. By combining clinical data with a discrete mutant mouse model and in vitro studies of human and mouse cells, we identify macroH2A1.1 as a key player in the cellular and molecular features of MDS. These data justify the exploration of macroH2A1.1 and associated proteins as therapeutic targets in hematological malignancies.
650    _2
$a makrocytární anemie $x genetika $7 D000748
650    _2
$a zvířata $7 D000818
650    _2
$a buněčná diferenciace $7 D002454
650    _2
$a chromozomální delece $7 D002872
650    _2
$a lidské chromozomy, pár 5 $x genetika $7 D002895
650    _2
$a modely nemocí na zvířatech $7 D004195
650    12
$a down regulace $7 D015536
650    _2
$a epigeneze genetická $7 D044127
650    _2
$a haploinsuficience $7 D057895
650    _2
$a hematopoetické kmenové buňky $x chemie $x cytologie $7 D006412
650    _2
$a histony $x genetika $7 D006657
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    _2
$a mutace $7 D009154
650    _2
$a myelodysplastické syndromy $x genetika $7 D009190
650    _2
$a místa sestřihu RNA $7 D022821
650    _2
$a sekvenční analýza RNA $7 D017423
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lo Re, Oriana $u International Clinical Research Center, St'Anne University Hospital, Brno, Czech Republic. Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Nikulenkov, Fedor $u International Clinical Research Center, St'Anne University Hospital, Brno, Czech Republic. Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Flamini, Sara $u Department of Medicine, Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy.
700    1_
$a Kotaskova, Jana $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic. Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czech Republic.
700    1_
$a Mazza, Tommaso $u IRCCS Casa Sollievo della Sofferenza, Bioinformatics unit, San Giovanni Rotondo, Italy.
700    1_
$a Le Pannérer, Marguerite-Marie $u Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Campus ICO-Germans Trias I Pujol, Badalona, Spain. Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain.
700    1_
$a Buschbeck, Marcus $u Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Campus ICO-Germans Trias I Pujol, Badalona, Spain. Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain.
700    1_
$a Giallongo, Cesarina $u Division of Hematology, A.O.U. Policlinico-OVE, University of Catania, Catania, Italy.
700    1_
$a Palumbo, Giuseppe $u Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy.
700    1_
$a Li Volti, Giovanni $u Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
700    1_
$a Pazienza, Valerio $u Gastroenterology unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
700    1_
$a Cervinek, Libor $u Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czech Republic.
700    1_
$a Riccardi, Carlo $u Department of Medicine, Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy.
700    1_
$a Krejci, Lumir $u International Clinical Research Center, St'Anne University Hospital, Brno, Czech Republic. Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Pospisilova, Sarka $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic. Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czech Republic.
700    1_
$a Stewart, A Francis $u Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
700    1_
$a Vinciguerra, Manlio $u International Clinical Research Center, St'Anne University Hospital, Brno, Czech Republic. manlio.vinciguerra@fnusa.cz.
773    0_
$w MED00186202 $t Clinical epigenetics $x 1868-7083 $g Roč. 11, č. 1 (2019), s. 121
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31439048 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214131012 $b ABA008
999    __
$a ok $b bmc $g 1596055 $s 1114412
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 11 $c 1 $d 121 $e 20190822 $i 1868-7083 $m Clinical epigenetics $n Clin Epigenetics $x MED00186202
GRA    __
$a 206292/E/17/Z $p Wellcome Trust $2 United Kingdom
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...