Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The Genome of Peronospora belbahrii Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters

M. Thines, R. Sharma, SYA. Rodenburg, A. Gogleva, HS. Judelson, X. Xia, J. van den Hoogen, M. Kitner, J. Klein, M. Neilen, D. de Ridder, MF. Seidl, G. van den Ackerveken, F. Govers, S. Schornack, DJ. Studholme,

. 2020 ; 33 (5) : 742-753. [pub] 20200401

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025050

Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025050
003      
CZ-PrNML
005      
20201222155030.0
007      
ta
008      
201125s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1094/MPMI-07-19-0211-R $2 doi
035    __
$a (PubMed)32237964
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Thines, Marco $u Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany. Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany. Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany.
245    14
$a The Genome of Peronospora belbahrii Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters / $c M. Thines, R. Sharma, SYA. Rodenburg, A. Gogleva, HS. Judelson, X. Xia, J. van den Hoogen, M. Kitner, J. Klein, M. Neilen, D. de Ridder, MF. Seidl, G. van den Ackerveken, F. Govers, S. Schornack, DJ. Studholme,
520    9_
$a Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.
650    12
$a genom mitochondriální $7 D054629
650    _2
$a genomika $7 D023281
650    _2
$a Peronospora $x genetika $7 D044742
650    _2
$a nemoci rostlin $x mikrobiologie $7 D010935
650    _2
$a promotorové oblasti (genetika) $7 D011401
655    _2
$a časopisecké články $7 D016428
700    1_
$a Sharma, Rahul $u Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany. Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany. Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany.
700    1_
$a Rodenburg, Sander Y A $u Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands. Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
700    1_
$a Gogleva, Anna $u University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K.
700    1_
$a Judelson, Howard S $u Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521 U.S.A.
700    1_
$a Xia, Xiaojuan $u Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany. Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany.
700    1_
$a van den Hoogen, Johan $u Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
700    1_
$a Kitner, Miloslav $u Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
700    1_
$a Klein, Joël $u Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
700    1_
$a Neilen, Manon $u Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
700    1_
$a de Ridder, Dick $u Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
700    1_
$a Seidl, Michael F $u Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
700    1_
$a van den Ackerveken, Guido $u Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
700    1_
$a Govers, Francine $u Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
700    1_
$a Schornack, Sebastian $u University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K.
700    1_
$a Studholme, David J $u Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.
773    0_
$w MED00006324 $t Molecular plant-microbe interactions : MPMI $x 0894-0282 $g Roč. 33, č. 5 (2020), s. 742-753
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32237964 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155026 $b ABA008
999    __
$a ok $b bmc $g 1599195 $s 1115736
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 33 $c 5 $d 742-753 $e 20200401 $i 0894-0282 $m Molecular plant-microbe interactions $n Mol Plant Microbe Interact $x MED00006324
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...