-
Je něco špatně v tomto záznamu ?
The Genome of Peronospora belbahrii Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters
M. Thines, R. Sharma, SYA. Rodenburg, A. Gogleva, HS. Judelson, X. Xia, J. van den Hoogen, M. Kitner, J. Klein, M. Neilen, D. de Ridder, MF. Seidl, G. van den Ackerveken, F. Govers, S. Schornack, DJ. Studholme,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 1988 do Před 1 rokem
Freely Accessible Science Journals
od 1988 do Před 1 rokem
ROAD: Directory of Open Access Scholarly Resources
od 1988
- MeSH
- genom mitochondriální * MeSH
- genomika MeSH
- nemoci rostlin mikrobiologie MeSH
- Peronospora genetika MeSH
- promotorové oblasti (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.
Bioinformatics Group Wageningen University Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
Department of Microbiology and Plant Pathology University of California Riverside CA 92521 U S A
University of Cambridge Sainsbury Laboratory 47 Bateman Street Cambridge CB2 1LR U K
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025050
- 003
- CZ-PrNML
- 005
- 20201222155030.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1094/MPMI-07-19-0211-R $2 doi
- 035 __
- $a (PubMed)32237964
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Thines, Marco $u Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany. Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany. Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany.
- 245 14
- $a The Genome of Peronospora belbahrii Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters / $c M. Thines, R. Sharma, SYA. Rodenburg, A. Gogleva, HS. Judelson, X. Xia, J. van den Hoogen, M. Kitner, J. Klein, M. Neilen, D. de Ridder, MF. Seidl, G. van den Ackerveken, F. Govers, S. Schornack, DJ. Studholme,
- 520 9_
- $a Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.
- 650 12
- $a genom mitochondriální $7 D054629
- 650 _2
- $a genomika $7 D023281
- 650 _2
- $a Peronospora $x genetika $7 D044742
- 650 _2
- $a nemoci rostlin $x mikrobiologie $7 D010935
- 650 _2
- $a promotorové oblasti (genetika) $7 D011401
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Sharma, Rahul $u Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany. Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany. Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany.
- 700 1_
- $a Rodenburg, Sander Y A $u Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands. Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- 700 1_
- $a Gogleva, Anna $u University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K.
- 700 1_
- $a Judelson, Howard S $u Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521 U.S.A.
- 700 1_
- $a Xia, Xiaojuan $u Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany. Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany.
- 700 1_
- $a van den Hoogen, Johan $u Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- 700 1_
- $a Kitner, Miloslav $u Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
- 700 1_
- $a Klein, Joël $u Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Neilen, Manon $u Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a de Ridder, Dick $u Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- 700 1_
- $a Seidl, Michael F $u Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- 700 1_
- $a van den Ackerveken, Guido $u Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Govers, Francine $u Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- 700 1_
- $a Schornack, Sebastian $u University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K.
- 700 1_
- $a Studholme, David J $u Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.
- 773 0_
- $w MED00006324 $t Molecular plant-microbe interactions : MPMI $x 0894-0282 $g Roč. 33, č. 5 (2020), s. 742-753
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32237964 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155026 $b ABA008
- 999 __
- $a ok $b bmc $g 1599195 $s 1115736
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 33 $c 5 $d 742-753 $e 20200401 $i 0894-0282 $m Molecular plant-microbe interactions $n Mol Plant Microbe Interact $x MED00006324
- LZP __
- $a Pubmed-20201125