-
Something wrong with this record ?
Secretion of Phospholipase Dδ Functions as a Regulatory Mechanism in Plant Innate Immunity
J. Xing, X. Li, X. Wang, X. Lv, L. Wang, L. Zhang, Y. Zhu, Q. Shen, F. Baluška, J. Šamaj, J. Lin,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1989 to 1 year ago
Freely Accessible Science Journals
from 1989 to 12 months ago
Open Access Digital Library
from 1989-01-01
PubMed
31597687
DOI
10.1105/tpc.19.00534
Knihovny.cz E-resources
- MeSH
- Arabidopsis genetics immunology metabolism microbiology MeSH
- Ascomycota pathogenicity MeSH
- Brefeldin A immunology metabolism MeSH
- Cell Membrane metabolism MeSH
- Chitin immunology metabolism MeSH
- Cyclopentanes metabolism MeSH
- Exocytosis drug effects immunology MeSH
- Phospholipase D genetics metabolism MeSH
- Phosphatidic Acids metabolism MeSH
- Plant Diseases immunology microbiology MeSH
- Oxylipins metabolism MeSH
- Hydrogen Peroxide metabolism MeSH
- Immunity, Innate * drug effects MeSH
- Arabidopsis Proteins metabolism MeSH
- Qa-SNARE Proteins metabolism MeSH
- R-SNARE Proteins metabolism MeSH
- SNARE Proteins genetics metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Signal Transduction immunology physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Plant phospholipase Ds (PLDs), essential regulators of phospholipid signaling, function in multiple signal transduction cascades; however, the mechanisms regulating PLDs in response to pathogens remain unclear. Here, we found that Arabidopsis (Arabidopsis thaliana) PLDδ accumulated in cells at the entry sites of the barley powdery mildew fungus, Blumeria graminis f. sp hordei Using fluorescence recovery after photobleaching and single-molecule analysis, we observed higher PLDδ density in the plasma membrane after chitin treatment; PLDδ also underwent rapid exocytosis. Fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy showed that the interaction between PLDδ and the microdomain marker AtREMORIN1.3 (AtREM1.3) increased in response to chitin, indicating that exocytosis facilitates rapid, efficient sorting of PLDδ into microdomains upon pathogen stimulus. We further unveiled a trade-off between brefeldin A (BFA)-resistant and -sensitive pathways in secretion of PLDδ under diverse conditions. Upon pathogen attack, PLDδ secretion involved syntaxin-associated VAMP721/722-mediated exocytosis sensitive to BFA. Analysis of phosphatidic acid (PA), hydrogen peroxide, and jasmonic acid (JA) levels and expression of related genes indicated that the relocalization of PLDδ is crucial for its activation to produce PA and initiate reactive oxygen species and JA signaling pathways. Together, our findings revealed that the translocation of PLDδ to papillae is modulated by exocytosis, thus triggering PA-mediated signaling in plant innate immunity.plantcell;31/12/3015/FX1F1fx1.
Institute of Botany Chinese Academy of Sciences Beijing 100093 China
Key Laboratory of Plant Stress Biology School of Life Sciences Henan University Kaifeng 457004 China
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025460
- 003
- CZ-PrNML
- 005
- 20201222155213.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1105/tpc.19.00534 $2 doi
- 035 __
- $a (PubMed)31597687
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Xing, Jingjing $u Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China. Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 457004, China.
- 245 10
- $a Secretion of Phospholipase Dδ Functions as a Regulatory Mechanism in Plant Innate Immunity / $c J. Xing, X. Li, X. Wang, X. Lv, L. Wang, L. Zhang, Y. Zhu, Q. Shen, F. Baluška, J. Šamaj, J. Lin,
- 520 9_
- $a Plant phospholipase Ds (PLDs), essential regulators of phospholipid signaling, function in multiple signal transduction cascades; however, the mechanisms regulating PLDs in response to pathogens remain unclear. Here, we found that Arabidopsis (Arabidopsis thaliana) PLDδ accumulated in cells at the entry sites of the barley powdery mildew fungus, Blumeria graminis f. sp hordei Using fluorescence recovery after photobleaching and single-molecule analysis, we observed higher PLDδ density in the plasma membrane after chitin treatment; PLDδ also underwent rapid exocytosis. Fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy showed that the interaction between PLDδ and the microdomain marker AtREMORIN1.3 (AtREM1.3) increased in response to chitin, indicating that exocytosis facilitates rapid, efficient sorting of PLDδ into microdomains upon pathogen stimulus. We further unveiled a trade-off between brefeldin A (BFA)-resistant and -sensitive pathways in secretion of PLDδ under diverse conditions. Upon pathogen attack, PLDδ secretion involved syntaxin-associated VAMP721/722-mediated exocytosis sensitive to BFA. Analysis of phosphatidic acid (PA), hydrogen peroxide, and jasmonic acid (JA) levels and expression of related genes indicated that the relocalization of PLDδ is crucial for its activation to produce PA and initiate reactive oxygen species and JA signaling pathways. Together, our findings revealed that the translocation of PLDδ to papillae is modulated by exocytosis, thus triggering PA-mediated signaling in plant innate immunity.plantcell;31/12/3015/FX1F1fx1.
- 650 _2
- $a Arabidopsis $x genetika $x imunologie $x metabolismus $x mikrobiologie $7 D017360
- 650 _2
- $a proteiny huseníčku $x metabolismus $7 D029681
- 650 _2
- $a Ascomycota $x patogenita $7 D001203
- 650 _2
- $a brefeldin A $x imunologie $x metabolismus $7 D020126
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 _2
- $a chitin $x imunologie $x metabolismus $7 D002686
- 650 _2
- $a cyklopentany $x metabolismus $7 D003517
- 650 _2
- $a exocytóza $x účinky léků $x imunologie $7 D005089
- 650 _2
- $a peroxid vodíku $x metabolismus $7 D006861
- 650 12
- $a přirozená imunita $x účinky léků $7 D007113
- 650 _2
- $a oxylipiny $x metabolismus $7 D054883
- 650 _2
- $a kyseliny fosfatidové $x metabolismus $7 D010712
- 650 _2
- $a fosfolipasa D $x genetika $x metabolismus $7 D010739
- 650 _2
- $a nemoci rostlin $x imunologie $x mikrobiologie $7 D010935
- 650 _2
- $a proteiny Qa-SNARE $x metabolismus $7 D050765
- 650 _2
- $a proteiny R-SNARE $x metabolismus $7 D050683
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a proteiny SNARE $x genetika $x metabolismus $7 D050600
- 650 _2
- $a signální transdukce $x imunologie $x fyziologie $7 D015398
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Li, Xiaojuan $u Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China linjx@ibcas.ac.cn. Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
- 700 1_
- $a Wang, Xiaohua $u Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- 700 1_
- $a Lv, Xueqin $u Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
- 700 1_
- $a Wang, Li $u Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- 700 1_
- $a Zhang, Liang $u Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- 700 1_
- $a Zhu, Yingfang $u Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 457004, China.
- 700 1_
- $a Shen, Qianhua $u State Key Laboratory of Plant Cell and Chromosome Engineering, Centre for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China.
- 700 1_
- $a Baluška, František $u Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University Bonn, Department of Plant Cell Biology, Bonn D-53115, Germany.
- 700 1_
- $a Šamaj, Jozef $u Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Olomouc 78301, Czech Republic.
- 700 1_
- $a Lin, Jinxing $u Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China linjx@ibcas.ac.cn. Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
- 773 0_
- $w MED00005315 $t The Plant cell $x 1532-298X $g Roč. 31, č. 12 (2019), s. 3015-3032
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31597687 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155208 $b ABA008
- 999 __
- $a ok $b bmc $g 1599605 $s 1116146
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 31 $c 12 $d 3015-3032 $e 20191009 $i 1532-298X $m The Plant cell $n Plant Cell $x MED00005315
- LZP __
- $a Pubmed-20201125