• Something wrong with this record ?

Pathomics in urology

VM. Schuettfort, B. Pradere, M. Rink, E. Comperat, SF. Shariat

. 2020 ; 30 (6) : 823-831. [pub] -

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

PURPOSE OF REVIEW: Pathomics, the fusion of digitalized pathology and artificial intelligence, is currently changing the landscape of medical pathology and biologic disease classification. In this review, we give an overview of Pathomics and summarize its most relevant applications in urology. RECENT FINDINGS: There is a steady rise in the number of studies employing Pathomics, and especially deep learning, in urology. In prostate cancer, several algorithms have been developed for the automatic differentiation between benign and malignant lesions and to differentiate Gleason scores. Furthermore, several applications have been developed for the automatic cancer cell detection in urine and for tumor assessment in renal cancer. Despite the explosion in research, Pathomics is not fully ready yet for widespread clinical application. SUMMARY: In prostate cancer and other urologic pathologies, Pathomics is avidly being researched with commercial applications on the close horizon. Pathomics is set to improve the accuracy, speed, reliability, cost-effectiveness and generalizability of pathology, especially in uro-oncology.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019870
003      
CZ-PrNML
005      
20210830101453.0
007      
ta
008      
210728s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1097/MOU.0000000000000813 $2 doi
035    __
$a (PubMed)32881725
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Schuettfort, Victor M $u Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Vienna, Austria $u Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
245    10
$a Pathomics in urology / $c VM. Schuettfort, B. Pradere, M. Rink, E. Comperat, SF. Shariat
520    9_
$a PURPOSE OF REVIEW: Pathomics, the fusion of digitalized pathology and artificial intelligence, is currently changing the landscape of medical pathology and biologic disease classification. In this review, we give an overview of Pathomics and summarize its most relevant applications in urology. RECENT FINDINGS: There is a steady rise in the number of studies employing Pathomics, and especially deep learning, in urology. In prostate cancer, several algorithms have been developed for the automatic differentiation between benign and malignant lesions and to differentiate Gleason scores. Furthermore, several applications have been developed for the automatic cancer cell detection in urine and for tumor assessment in renal cancer. Despite the explosion in research, Pathomics is not fully ready yet for widespread clinical application. SUMMARY: In prostate cancer and other urologic pathologies, Pathomics is avidly being researched with commercial applications on the close horizon. Pathomics is set to improve the accuracy, speed, reliability, cost-effectiveness and generalizability of pathology, especially in uro-oncology.
650    12
$a umělá inteligence $7 D001185
650    _2
$a karcinom z renálních buněk $x patologie $7 D002292
650    _2
$a deep learning $7 D000077321
650    _2
$a diagnóza počítačová $7 D003936
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a nádory ledvin $x patologie $7 D007680
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a stupeň nádoru $7 D060787
650    12
$a patologie $7 D010336
650    _2
$a nádory prostaty $x patologie $7 D011471
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a testikulární nádory $x patologie $7 D013736
650    _2
$a urogenitální nádory $x patologie $7 D014565
650    _2
$a urologické nádory $x patologie $7 D014571
650    12
$a urologie $7 D014572
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Pradere, Benjamin $u Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Vienna, Austria $u Department of Urology, University Hospital of Tours, Tours
700    1_
$a Rink, Michael $u Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
700    1_
$a Comperat, Eva $u Department of Pathology, Sorbonne University, Assistance Publique-Hôpitaux de Paris, Hopital Tenon, Paris, France
700    1_
$a Shariat, Shahrokh F $u Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Vienna, Austria $u Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia $u Department of Urology, Weill Cornell Medical College, New York, New York $u Department of Urology, University of Texas Southwestern, Dallas, Texas, USA $u Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic $u Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria $u European Association of Urology Research Foundation, Arnhem, Netherlands
773    0_
$w MED00001296 $t Current opinion in urology $x 1473-6586 $g Roč. 30, č. 6 (2020), s. 823-831
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32881725 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101453 $b ABA008
999    __
$a ok $b bmc $g 1690635 $s 1140316
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 30 $c 6 $d 823-831 $e - $i 1473-6586 $m Current opinion in urology $n Curr Opin Urol $x MED00001296
LZP    __
$a Pubmed-20210728

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...