Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Microwave ablation of lung tumors: A probabilistic approach for simulation-based treatment planning

J. Sebek, P. Taeprasartsit, H. Wibowo, WL. Beard, R. Bortel, P. Prakash

. 2021 ; 48 (7) : 3991-4003. [pub] 20210527

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21025481

Grantová podpora
R01 CA218357 NCI NIH HHS - United States
CZ.02.1.01/0.0/0.0/16_019/0000765 Czech Ministry of Education, Youth and Sports OP VVV
R01CA218357 NIH HHS - United States

PURPOSE: Microwave ablation (MWA) is a clinically established modality for treatment of lung tumors. A challenge with existing application of MWA, however, is local tumor progression, potentially due to failure to establish an adequate treatment margin. This study presents a robust simulation-based treatment planning methodology to assist operators in comparatively assessing thermal profiles and likelihood of achieving a specified minimum margin as a function of candidate applied energy parameters. METHODS: We employed a biophysical simulation-based probabilistic treatment planning methodology to evaluate the likelihood of achieving a specified minimum margin for candidate treatment parameters (i.e., applied power and ablation duration for a given applicator position within a tumor). A set of simulations with varying tissue properties was evaluated for each considered combination of power and ablation duration, and for four different scenarios of contrast in tissue biophysical properties between tumor and normal lung. A treatment planning graph was then assembled, where distributions of achieved minimum ablation zone margins and collateral damage volumes can be assessed for candidate applied power and treatment duration combinations. For each chosen power and time combination, the operator can also visualize the histogram of ablation zone boundaries overlaid on the tumor and target volumes. We assembled treatment planning graphs for generic 1, 2, and 2.5 cm diameter spherically shaped tumors and also illustrated the impact of tissue heterogeneity on delivered treatment plans and resulting ablation histograms. Finally, we illustrated the treatment planning methodology on two example patient-specific cases of tumors with irregular shapes. RESULTS: The assembled treatment planning graphs indicate that 30 W, 6 min ablations achieve a 5-mm minimum margin across all simulated cases for 1-cm diameter spherical tumors, and 70 W, 10 min ablations achieve a 3-mm minimum margin across 90% of simulations for a 2.5-cm diameter spherical tumor. Different scenarios of tissue heterogeneity between tumor and lung tissue revealed 2 min overall difference in ablation duration, in order to reliably achieve a 4-mm minimum margin or larger each time for 2-cm diameter spherical tumor. CONCLUSIONS: An approach for simulation-based treatment planning for microwave ablation of lung tumors is illustrated to account for the impact of specific geometry of the treatment site, tissue property uncertainty, and heterogeneity between the tumor and normal lung.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025481
003      
CZ-PrNML
005      
20211026133751.0
007      
ta
008      
211013s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/mp.14923 $2 doi
035    __
$a (PubMed)33964020
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sebek, Jan $u Department of Electrical and Computer Engineering, Kansas State University Manhattan, KS, 66506, USA $u Department of Circuit Theory, Czech Technical University in Prague, Prague, Czech Republic
245    10
$a Microwave ablation of lung tumors: A probabilistic approach for simulation-based treatment planning / $c J. Sebek, P. Taeprasartsit, H. Wibowo, WL. Beard, R. Bortel, P. Prakash
520    9_
$a PURPOSE: Microwave ablation (MWA) is a clinically established modality for treatment of lung tumors. A challenge with existing application of MWA, however, is local tumor progression, potentially due to failure to establish an adequate treatment margin. This study presents a robust simulation-based treatment planning methodology to assist operators in comparatively assessing thermal profiles and likelihood of achieving a specified minimum margin as a function of candidate applied energy parameters. METHODS: We employed a biophysical simulation-based probabilistic treatment planning methodology to evaluate the likelihood of achieving a specified minimum margin for candidate treatment parameters (i.e., applied power and ablation duration for a given applicator position within a tumor). A set of simulations with varying tissue properties was evaluated for each considered combination of power and ablation duration, and for four different scenarios of contrast in tissue biophysical properties between tumor and normal lung. A treatment planning graph was then assembled, where distributions of achieved minimum ablation zone margins and collateral damage volumes can be assessed for candidate applied power and treatment duration combinations. For each chosen power and time combination, the operator can also visualize the histogram of ablation zone boundaries overlaid on the tumor and target volumes. We assembled treatment planning graphs for generic 1, 2, and 2.5 cm diameter spherically shaped tumors and also illustrated the impact of tissue heterogeneity on delivered treatment plans and resulting ablation histograms. Finally, we illustrated the treatment planning methodology on two example patient-specific cases of tumors with irregular shapes. RESULTS: The assembled treatment planning graphs indicate that 30 W, 6 min ablations achieve a 5-mm minimum margin across all simulated cases for 1-cm diameter spherical tumors, and 70 W, 10 min ablations achieve a 3-mm minimum margin across 90% of simulations for a 2.5-cm diameter spherical tumor. Different scenarios of tissue heterogeneity between tumor and lung tissue revealed 2 min overall difference in ablation duration, in order to reliably achieve a 4-mm minimum margin or larger each time for 2-cm diameter spherical tumor. CONCLUSIONS: An approach for simulation-based treatment planning for microwave ablation of lung tumors is illustrated to account for the impact of specific geometry of the treatment site, tissue property uncertainty, and heterogeneity between the tumor and normal lung.
650    12
$a ablace $7 D055011
650    12
$a katetrizační ablace $7 D017115
650    _2
$a počítačová simulace $7 D003198
650    _2
$a lidé $7 D006801
650    12
$a nádory plic $x diagnostické zobrazování $x chirurgie $7 D008175
650    _2
$a mikrovlny $x terapeutické užití $7 D008872
650    12
$a radiofrekvenční ablace $7 D000078703
655    _2
$a časopisecké články $7 D016428
700    1_
$a Taeprasartsit, Pinyo $u PhenoMapper, LLC, San Jose, CA, 95112, USA $u Department of Computing, Faculty of Science, Silpakorn University, Thailand
700    1_
$a Wibowo, Henky $u PhenoMapper, LLC, San Jose, CA, 95112, USA
700    1_
$a Beard, Warren L $u Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506, USA
700    1_
$a Bortel, Radoslav $u Department of Circuit Theory, Czech Technical University in Prague, Prague, Czech Republic
700    1_
$a Prakash, Punit $u Department of Electrical and Computer Engineering, Kansas State University Manhattan, KS, 66506, USA
773    0_
$w MED00003245 $t Medical physics $x 2473-4209 $g Roč. 48, č. 7 (2021), s. 3991-4003
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33964020 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026133757 $b ABA008
999    __
$a ok $b bmc $g 1714509 $s 1145988
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 48 $c 7 $d 3991-4003 $e 20210527 $i 2473-4209 $m Medical physics $n Med Phys $x MED00003245
GRA    __
$a R01 CA218357 $p NCI NIH HHS $2 United States
GRA    __
$a CZ.02.1.01/0.0/0.0/16_019/0000765 $p Czech Ministry of Education, Youth and Sports OP VVV
GRA    __
$a R01CA218357 $p NIH HHS $2 United States
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...