-
Something wrong with this record ?
Prediction of biological activity of compounds containing a 1,3,5-triazinyl sulfonamide scaffold by artificial neural networks using simple molecular descriptors
E. Havránková, EM. Peña-Méndez, J. Csöllei, J. Havel
Language English Country United States
Document type Journal Article
- MeSH
- Antigens, Neoplasm metabolism MeSH
- Carbonic Anhydrase Inhibitors chemistry metabolism MeSH
- Carbonic Anhydrase II antagonists & inhibitors metabolism MeSH
- Carbonic Anhydrase IX antagonists & inhibitors metabolism MeSH
- Humans MeSH
- Neural Networks, Computer * MeSH
- Drug Design MeSH
- Sulfonamides chemistry metabolism MeSH
- Triazines chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Simple molecular descriptors of extensive series of 1,3,5-triazinyl sulfonamide derivatives, based on the structure of sulfonamides and their physicochemical properties, were designed and calculated. These descriptors were successfully applied as inputs for artificial neural network (ANN) modelling of the relationship between the structure and biological activity. The optimized ANN architecture was applied to the prediction of the inhibition activity of 1,3,5-triazinyl sulfonamides against human carbonic anhydrase (hCA) II, tumour-associated hCA IX, and their selectivity (hCA II/hCA IX).
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026099
- 003
- CZ-PrNML
- 005
- 20211026133218.0
- 007
- ta
- 008
- 211013s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bioorg.2020.104565 $2 doi
- 035 __
- $a (PubMed)33418318
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Havránková, Eva $u Masaryk University, Faculty of Pharmacy, Department of Chemical Drugs, Palackého 1-3, CZ-612 42 Brno, Czech Republic
- 245 10
- $a Prediction of biological activity of compounds containing a 1,3,5-triazinyl sulfonamide scaffold by artificial neural networks using simple molecular descriptors / $c E. Havránková, EM. Peña-Méndez, J. Csöllei, J. Havel
- 520 9_
- $a Simple molecular descriptors of extensive series of 1,3,5-triazinyl sulfonamide derivatives, based on the structure of sulfonamides and their physicochemical properties, were designed and calculated. These descriptors were successfully applied as inputs for artificial neural network (ANN) modelling of the relationship between the structure and biological activity. The optimized ANN architecture was applied to the prediction of the inhibition activity of 1,3,5-triazinyl sulfonamides against human carbonic anhydrase (hCA) II, tumour-associated hCA IX, and their selectivity (hCA II/hCA IX).
- 650 _2
- $a antigeny nádorové $x metabolismus $7 D000951
- 650 _2
- $a karboanhydrasa II $x antagonisté a inhibitory $x metabolismus $7 D024402
- 650 _2
- $a karboanhydrasa IX $x antagonisté a inhibitory $x metabolismus $7 D000071231
- 650 _2
- $a inhibitory karboanhydras $x chemie $x metabolismus $7 D002257
- 650 _2
- $a racionální návrh léčiv $7 D015195
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a sulfonamidy $x chemie $x metabolismus $7 D013449
- 650 _2
- $a triaziny $x chemie $7 D014227
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Peña-Méndez, E M $u Universidad de La Laguna (ULL), Facultad de Ciencias, Departamento de Química, Unidad Departamental de Química Analítica, 38201 La Laguna, Spain
- 700 1_
- $a Csöllei, Jozef $u Masaryk University, Faculty of Pharmacy, Department of Chemical Drugs, Palackého 1-3, CZ-612 42 Brno, Czech Republic
- 700 1_
- $a Havel, Josef $u Masaryk University, Faculty of Science, Department of Chemistry, University Campus, Kamenice 753/5, CZ-625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
- 773 0_
- $w MED00000771 $t Bioorganic chemistry $x 1090-2120 $g Roč. 107, č. - (2021), s. 104565
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33418318 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133224 $b ABA008
- 999 __
- $a ok $b bmc $g 1714956 $s 1146606
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 107 $c - $d 104565 $e 20201219 $i 1090-2120 $m Bioorganic chemistry $n Bioorg Chem $x MED00000771
- LZP __
- $a Pubmed-20211013