• Je něco špatně v tomto záznamu ?

Split Chloramphenicol Acetyl-Transferase Assay Reveals Self-Ubiquitylation-Dependent Regulation of UBE3B

O. Levin-Kravets, A. Kordonsky, A. Shusterman, S. Biswas, A. Persaud, S. Elias, Y. Langut, A. Florentin, KJ. Simpson-Lavy, E. Yariv, R. Avishid, M. Sror, O. Almog, T. Marshanski, S. Kadosh, N. Ben David, B. Manori, Z. Fischer, J. Lilly, E....

. 2021 ; 433 (23) : 167276. [pub] 20210929

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003185

Grantová podpora
FDN-159918 CIHR - Canada

Split reporter protein-based genetic section systems are widely used to identify and characterize protein-protein interactions (PPI). The assembly of split markers that antagonize toxins, rather than required for synthesis of missing metabolites, facilitates the seeding of high density of cells and selective growth. Here we present a newly developed split chloramphenicol acetyltransferase (split-CAT) -based genetic selection system. The N terminus fragment of CAT is fused downstream of the protein of interest and the C terminus fragment is tethered upstream to its postulated partner. We demonstrate the system's advantages for the study of PPIs. Moreover, we show that co-expression of a functional ubiquitylation cascade where the target and ubiquitin are tethered to the split-CAT fragments results in ubiquitylation-dependent selective growth. Since proteins do not have to be purified from the bacteria and due to the high sensitivity of the split-CAT reporter, detection of challenging protein cascades and post-translation modifications is enabled. In addition, we demonstrate that the split-CAT system responds to small molecule inhibitors and molecular glues (GLUTACs). The absence of ubiquitylation-dependent degradation and deubiquitylation in E. coli significantly simplify the interpretation of the results. We harnessed the developed system to demonstrate that like NEDD4, UBE3B also undergoes self-ubiquitylation-dependent inactivation. We show that self-ubiquitylation of UBE3B on K665 induces oligomerization and inactivation in yeast and mammalian cells respectively. Finally, we showcase the advantages of split-CAT in the study of human diseases by demonstrating that mutations in UBE3B that cause Kaufman oculocerebrofacial syndrome exhibit clear E. coli growth phenotypes.

000      
00000naa a2200000 a 4500
001      
bmc22003185
003      
CZ-PrNML
005      
20220127150605.0
007      
ta
008      
220113s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jmb.2021.167276 $2 doi
035    __
$a (PubMed)34599943
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Levin-Kravets, Olga $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
245    10
$a Split Chloramphenicol Acetyl-Transferase Assay Reveals Self-Ubiquitylation-Dependent Regulation of UBE3B / $c O. Levin-Kravets, A. Kordonsky, A. Shusterman, S. Biswas, A. Persaud, S. Elias, Y. Langut, A. Florentin, KJ. Simpson-Lavy, E. Yariv, R. Avishid, M. Sror, O. Almog, T. Marshanski, S. Kadosh, N. Ben David, B. Manori, Z. Fischer, J. Lilly, E. Borisova, MC. Ambrozkiewicz, V. Tarabykin, M. Kupiec, M. Thaker, D. Rotin, G. Prag
520    9_
$a Split reporter protein-based genetic section systems are widely used to identify and characterize protein-protein interactions (PPI). The assembly of split markers that antagonize toxins, rather than required for synthesis of missing metabolites, facilitates the seeding of high density of cells and selective growth. Here we present a newly developed split chloramphenicol acetyltransferase (split-CAT) -based genetic selection system. The N terminus fragment of CAT is fused downstream of the protein of interest and the C terminus fragment is tethered upstream to its postulated partner. We demonstrate the system's advantages for the study of PPIs. Moreover, we show that co-expression of a functional ubiquitylation cascade where the target and ubiquitin are tethered to the split-CAT fragments results in ubiquitylation-dependent selective growth. Since proteins do not have to be purified from the bacteria and due to the high sensitivity of the split-CAT reporter, detection of challenging protein cascades and post-translation modifications is enabled. In addition, we demonstrate that the split-CAT system responds to small molecule inhibitors and molecular glues (GLUTACs). The absence of ubiquitylation-dependent degradation and deubiquitylation in E. coli significantly simplify the interpretation of the results. We harnessed the developed system to demonstrate that like NEDD4, UBE3B also undergoes self-ubiquitylation-dependent inactivation. We show that self-ubiquitylation of UBE3B on K665 induces oligomerization and inactivation in yeast and mammalian cells respectively. Finally, we showcase the advantages of split-CAT in the study of human diseases by demonstrating that mutations in UBE3B that cause Kaufman oculocerebrofacial syndrome exhibit clear E. coli growth phenotypes.
650    _2
$a biotest $x metody $7 D001681
650    _2
$a chloramfenikol-O-acetyltransferasa $x genetika $x metabolismus $7 D015500
650    _2
$a aktivace enzymů $7 D004789
650    _2
$a Escherichia coli $x genetika $x metabolismus $7 D004926
650    12
$a exprese genu $7 D015870
650    12
$a reportérové geny $7 D017930
650    _2
$a posttranslační úpravy proteinů $7 D011499
650    _2
$a proteolýza $7 D059748
650    _2
$a ubikvitinligasy $x metabolismus $7 D044767
650    12
$a ubikvitinace $7 D054875
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kordonsky, Alina $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Shusterman, Anna $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Biswas, Sagnik $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Persaud, Avinash $u Cell Biology Program, The Hospital for Sick Children and Biochemistry Department, University of Toronto, Toronto, ON, Canada
700    1_
$a Elias, Sivan $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Langut, Yael $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Florentin, Amir $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Simpson-Lavy, Kobi J $u The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Yariv, Elon $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Avishid, Reut $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Sror, Mor $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Almog, Ofir $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Marshanski, Tal $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel. Electronic address: https://twitter.com/@TalMarsh
700    1_
$a Kadosh, Shira $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Ben David, Nicole $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Manori, Bar $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Fischer, Zohar $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Lilly, Jeremiah $u Novartis Institutes for Biomedical Research, 250 Massachusetts Ave., Cambridge, MA 02139, USA
700    1_
$a Borisova, Ekaterina $u Institute of Medical Genetics, Tomsk National Research Medical Center Neuroscience, Lobachevsky University of the Russian Academy of Sciences Nizhny Novgorod, pr. Gagarina 24, Nizhny Novgorod, Russia; Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
700    1_
$a Ambrozkiewicz, Mateusz C $u Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany. Electronic address: https://twitter.com/@MAmbrozkiewicz
700    1_
$a Tarabykin, Victor $u Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
700    1_
$a Kupiec, Martin $u The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
700    1_
$a Thaker, Maulik $u Novartis Institutes for Biomedical Research, 250 Massachusetts Ave., Cambridge, MA 02139, USA
700    1_
$a Rotin, Daniela $u Cell Biology Program, The Hospital for Sick Children and Biochemistry Department, University of Toronto, Toronto, ON, Canada
700    1_
$a Prag, Gali $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. Electronic address: prag@tauex.tau.ac.il
773    0_
$w MED00002808 $t Journal of molecular biology $x 1089-8638 $g Roč. 433, č. 23 (2021), s. 167276
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34599943 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150601 $b ABA008
999    __
$a ok $b bmc $g 1750833 $s 1154334
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 433 $c 23 $d 167276 $e 20210929 $i 1089-8638 $m Journal of Molecular Biology $n J Mol Biol $x MED00002808
GRA    __
$a FDN-159918 $p CIHR $2 Canada
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...