-
Something wrong with this record ?
Amine modification of calcium phosphate by low-pressure plasma for bone regeneration
J. Kodama, AA. Harumningtyas, T. Ito, M. Michlíček, S. Sugimoto, H. Kita, R. Chijimatsu, Y. Ukon, J. Kushioka, R. Okada, T. Kamatani, K. Hashimoto, D. Tateiwa, H. Tsukazaki, S. Nakagawa, S. Takenaka, T. Makino, Y. Sakai, D. Nečas, L. Zajíčková,...
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2011
Free Medical Journals
from 2011
Nature Open Access
from 2011-12-01
PubMed Central
from 2011
Europe PubMed Central
from 2011
ProQuest Central
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Health & Medicine (ProQuest)
from 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
Springer Nature OA/Free Journals
from 2011-12-01
- MeSH
- Biocompatible Materials metabolism MeSH
- Cell Differentiation physiology MeSH
- Calcium Phosphates metabolism MeSH
- Bone Substitutes metabolism therapeutic use MeSH
- Rats MeSH
- Osteogenesis physiology MeSH
- Bone Regeneration physiology MeSH
- Bone Transplantation methods MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Regeneration of large bone defects caused by trauma or tumor resection remains one of the biggest challenges in orthopedic surgery. Because of the limited availability of autograft material, the use of artificial bone is prevalent; however, the primary role of currently available artificial bone is restricted to acting as a bone graft extender owing to the lack of osteogenic ability. To explore whether surface modification might enhance artificial bone functionality, in this study we applied low-pressure plasma technology as next-generation surface treatment and processing strategy to chemically (amine) modify the surface of beta-tricalcium phosphate (β-TCP) artificial bone using a CH4/N2/He gas mixture. Plasma-treated β-TCP exhibited significantly enhanced hydrophilicity, facilitating the deep infiltration of cells into interconnected porous β-TCP. Additionally, cell adhesion and osteogenic differentiation on the plasma-treated artificial bone surfaces were also enhanced. Furthermore, in a rat calvarial defect model, the plasma treatment afforded high bone regeneration capacity. Together, these results suggest that amine modification of artificial bone by plasma technology can provide a high osteogenic ability and represents a promising strategy for resolving current clinical limitations regarding the use of artificial bone.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003752
- 003
- CZ-PrNML
- 005
- 20220127145915.0
- 007
- ta
- 008
- 220113s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-021-97460-8 $2 doi
- 035 __
- $a (PubMed)34504247
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Kodama, Joe $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 245 10
- $a Amine modification of calcium phosphate by low-pressure plasma for bone regeneration / $c J. Kodama, AA. Harumningtyas, T. Ito, M. Michlíček, S. Sugimoto, H. Kita, R. Chijimatsu, Y. Ukon, J. Kushioka, R. Okada, T. Kamatani, K. Hashimoto, D. Tateiwa, H. Tsukazaki, S. Nakagawa, S. Takenaka, T. Makino, Y. Sakai, D. Nečas, L. Zajíčková, S. Hamaguchi, T. Kaito
- 520 9_
- $a Regeneration of large bone defects caused by trauma or tumor resection remains one of the biggest challenges in orthopedic surgery. Because of the limited availability of autograft material, the use of artificial bone is prevalent; however, the primary role of currently available artificial bone is restricted to acting as a bone graft extender owing to the lack of osteogenic ability. To explore whether surface modification might enhance artificial bone functionality, in this study we applied low-pressure plasma technology as next-generation surface treatment and processing strategy to chemically (amine) modify the surface of beta-tricalcium phosphate (β-TCP) artificial bone using a CH4/N2/He gas mixture. Plasma-treated β-TCP exhibited significantly enhanced hydrophilicity, facilitating the deep infiltration of cells into interconnected porous β-TCP. Additionally, cell adhesion and osteogenic differentiation on the plasma-treated artificial bone surfaces were also enhanced. Furthermore, in a rat calvarial defect model, the plasma treatment afforded high bone regeneration capacity. Together, these results suggest that amine modification of artificial bone by plasma technology can provide a high osteogenic ability and represents a promising strategy for resolving current clinical limitations regarding the use of artificial bone.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a biokompatibilní materiály $x metabolismus $7 D001672
- 650 _2
- $a regenerace kostí $x fyziologie $7 D001861
- 650 _2
- $a kostní náhrady $x metabolismus $x terapeutické užití $7 D018786
- 650 _2
- $a transplantace kostí $x metody $7 D016025
- 650 _2
- $a fosforečnany vápenaté $x metabolismus $7 D002130
- 650 _2
- $a buněčná diferenciace $x fyziologie $7 D002454
- 650 _2
- $a osteogeneze $x fyziologie $7 D010012
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Harumningtyas, Anjar Anggraini $u Center for Atomic and Molecular Technologies (CAMT), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan $u Center for Accelerator Science and Technology, National Nuclear Energy Agency of Indonesia (BATAN), Jalan Babarsari Kotak Pos 6101 ykbb, Yogyakarta, 55281, Indonesia
- 700 1_
- $a Ito, Tomoko $u Center for Atomic and Molecular Technologies (CAMT), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Michlíček, Miroslav $u Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
- 700 1_
- $a Sugimoto, Satoshi $u Center for Atomic and Molecular Technologies (CAMT), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Kita, Hidekazu $u Center for Atomic and Molecular Technologies (CAMT), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Chijimatsu, Ryota $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan $u Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- 700 1_
- $a Ukon, Yuichiro $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Kushioka, Junichi $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Okada, Rintaro $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Kamatani, Takashi $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Hashimoto, Kunihiko $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Tateiwa, Daisuke $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Tsukazaki, Hiroyuki $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Nakagawa, Shinichi $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Takenaka, Shota $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Makino, Takahiro $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Sakai, Yusuke $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- 700 1_
- $a Nečas, David $u CEITEC - Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
- 700 1_
- $a Zajíčková, Lenka $u CEITEC - Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic $u Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
- 700 1_
- $a Hamaguchi, Satoshi $u Center for Atomic and Molecular Technologies (CAMT), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. hamaguch@ppl.eng.osaka-u.ac.jp
- 700 1_
- $a Kaito, Takashi $u Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. takashikaito@ort.med.osaka-u.ac.jp
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 11, č. 1 (2021), s. 17870
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34504247 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145911 $b ABA008
- 999 __
- $a ok $b bmc $g 1751260 $s 1154901
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 11 $c 1 $d 17870 $e 20210909 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20220113