Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Universal two-point interaction of mediator KIX with 9aaTAD activation domains

A. Hofrova, P. Lousa, M. Kubickova, J. Hritz, T. Otasevic, M. Repko, A. Knight, M. Piskacek

. 2021 ; 122 (10) : 1544-1555. [pub] 20210705

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22012150

The nine-amino-acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3-4 and p6-7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF-kB, and p53. In this study, we analyzed the 9aaTADs-KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1-α2-α3 are influenced by sterically-associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX-L12-G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1-α2-α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX-L12-G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX-L12-G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co-operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α-helixes and enables the enhanced formation of the KIX-L12-G2 region. This contributes to free energy and is the key for the KIX-9aaTAD binding. Therefore, the 9aaTAD-KIX interactions do not operate under the rigid key-and-lock mechanism what explains the 9aaTAD natural variability.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22012150
003      
CZ-PrNML
005      
20220506130014.0
007      
ta
008      
220425s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jcb.30075 $2 doi
035    __
$a (PubMed)34224597
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hofrova, Alena $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic
245    10
$a Universal two-point interaction of mediator KIX with 9aaTAD activation domains / $c A. Hofrova, P. Lousa, M. Kubickova, J. Hritz, T. Otasevic, M. Repko, A. Knight, M. Piskacek
520    9_
$a The nine-amino-acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3-4 and p6-7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF-kB, and p53. In this study, we analyzed the 9aaTADs-KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1-α2-α3 are influenced by sterically-associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX-L12-G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1-α2-α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX-L12-G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX-L12-G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co-operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α-helixes and enables the enhanced formation of the KIX-L12-G2 region. This contributes to free energy and is the key for the KIX-9aaTAD binding. Therefore, the 9aaTAD-KIX interactions do not operate under the rigid key-and-lock mechanism what explains the 9aaTAD natural variability.
650    _2
$a aminokyselinové motivy $7 D020816
650    _2
$a transkripční faktory bHLH $x chemie $x metabolismus $7 D051792
650    _2
$a vazebná místa $7 D001665
650    _2
$a protein vázající CREB $x chemie $x metabolismus $7 D050882
650    _2
$a histonlysin-N-methyltransferasa $x chemie $x metabolismus $7 D011495
650    _2
$a lidé $7 D006801
650    _2
$a protoonkogenní protein MLL $x chemie $x metabolismus $7 D051788
650    _2
$a NF-kappa B $x chemie $x metabolismus $7 D016328
650    _2
$a vazba proteinů $7 D011485
650    _2
$a interakční proteinové domény a motivy $7 D054730
650    _2
$a transkripční faktory $x chemie $x metabolismus $7 D014157
650    _2
$a nádorový supresorový protein p53 $x chemie $x metabolismus $7 D016159
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lousa, Petr $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
700    1_
$a Kubickova, Monika $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Core Facility Biomolecular Interactions and Crystallization (CF BIC), Masaryk University, Brno, Czech Republic
700    1_
$a Hritz, Jozef $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
700    1_
$a Otasevic, Tomas $u Orthopaedic Clinic, University Hospital Brno and Faculty of Medicine Masaryk University Brno
700    1_
$a Repko, Martin $u Orthopaedic Clinic, University Hospital Brno and Faculty of Medicine Masaryk University Brno
700    1_
$a Knight, Andrea $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Piskacek, Martin $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000262831542
773    0_
$w MED00002577 $t Journal of cellular biochemistry $x 1097-4644 $g Roč. 122, č. 10 (2021), s. 1544-1555
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34224597 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506130007 $b ABA008
999    __
$a ok $b bmc $g 1789653 $s 1163351
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 122 $c 10 $d 1544-1555 $e 20210705 $i 1097-4644 $m Journal of cellular biochemistry $n J Cell Biochem $x MED00002577
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...