Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Cbf11 and Mga2 function together to activate transcription of lipid metabolism genes and promote mitotic fidelity in fission yeast

A. Marešová, M. Grulyová, M. Hradilová, V. Zemlianski, J. Princová, M. Převorovský

. 2024 ; 20 (12) : e1011509. [pub] 20241209

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003065

Within a eukaryotic cell, both lipid homeostasis and faithful cell cycle progression are meticulously orchestrated. The fission yeast Schizosaccharomyces pombe provides a powerful platform to study the intricate regulatory mechanisms governing these fundamental processes. In S. pombe, the Cbf11 and Mga2 proteins are transcriptional activators of non-sterol lipid metabolism genes, with Cbf11 also known as a cell cycle regulator. Despite sharing a common set of target genes, little was known about their functional relationship. This study reveals that Cbf11 and Mga2 function together in the same regulatory pathway, critical for both lipid metabolism and mitotic fidelity. Deletion of either gene results in a similar array of defects, including slow growth, dysregulated lipid homeostasis, impaired cell cycle progression (cut phenotype), abnormal cell morphology, perturbed transcriptomic and proteomic profiles, and compromised response to the stressors camptothecin and thiabendazole. Remarkably, the double deletion mutant does not exhibit a more severe phenotype compared to the single mutants. In addition, ChIP-nexus analysis reveals that both Cbf11 and Mga2 bind to nearly identical positions within the promoter regions of target genes. Interestingly, Mga2 binding appears to be dependent on the presence of Cbf11 and Cbf11 likely acts as a tether to DNA, while Mga2 is needed to activate the target genes. In addition, the study explores the distribution of Cbf11 and Mga2 homologs across fungi. The presence of both Cbf11 and Mga2 homologs in Basidiomycota contrasts with Ascomycota, which mostly lack Cbf11 but retain Mga2. This suggests an evolutionary rewiring of the regulatory circuitry governing lipid metabolism and mitotic fidelity. In conclusion, this study offers compelling support for Cbf11 and Mga2 functioning jointly to regulate lipid metabolism and mitotic fidelity in fission yeast.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003065
003      
CZ-PrNML
005      
20250206104027.0
007      
ta
008      
250121s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pgen.1011509 $2 doi
035    __
$a (PubMed)39652606
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Marešová, Anna $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia $1 https://orcid.org/0000000308647231
245    10
$a Cbf11 and Mga2 function together to activate transcription of lipid metabolism genes and promote mitotic fidelity in fission yeast / $c A. Marešová, M. Grulyová, M. Hradilová, V. Zemlianski, J. Princová, M. Převorovský
520    9_
$a Within a eukaryotic cell, both lipid homeostasis and faithful cell cycle progression are meticulously orchestrated. The fission yeast Schizosaccharomyces pombe provides a powerful platform to study the intricate regulatory mechanisms governing these fundamental processes. In S. pombe, the Cbf11 and Mga2 proteins are transcriptional activators of non-sterol lipid metabolism genes, with Cbf11 also known as a cell cycle regulator. Despite sharing a common set of target genes, little was known about their functional relationship. This study reveals that Cbf11 and Mga2 function together in the same regulatory pathway, critical for both lipid metabolism and mitotic fidelity. Deletion of either gene results in a similar array of defects, including slow growth, dysregulated lipid homeostasis, impaired cell cycle progression (cut phenotype), abnormal cell morphology, perturbed transcriptomic and proteomic profiles, and compromised response to the stressors camptothecin and thiabendazole. Remarkably, the double deletion mutant does not exhibit a more severe phenotype compared to the single mutants. In addition, ChIP-nexus analysis reveals that both Cbf11 and Mga2 bind to nearly identical positions within the promoter regions of target genes. Interestingly, Mga2 binding appears to be dependent on the presence of Cbf11 and Cbf11 likely acts as a tether to DNA, while Mga2 is needed to activate the target genes. In addition, the study explores the distribution of Cbf11 and Mga2 homologs across fungi. The presence of both Cbf11 and Mga2 homologs in Basidiomycota contrasts with Ascomycota, which mostly lack Cbf11 but retain Mga2. This suggests an evolutionary rewiring of the regulatory circuitry governing lipid metabolism and mitotic fidelity. In conclusion, this study offers compelling support for Cbf11 and Mga2 functioning jointly to regulate lipid metabolism and mitotic fidelity in fission yeast.
650    12
$a Schizosaccharomyces $x genetika $x metabolismus $7 D012568
650    12
$a Schizosaccharomyces pombe - proteiny $x genetika $x metabolismus $7 D029702
650    12
$a regulace genové exprese u hub $7 D015966
650    12
$a metabolismus lipidů $x genetika $7 D050356
650    12
$a mitóza $x genetika $7 D008938
650    _2
$a transkripční faktory $x genetika $x metabolismus $7 D014157
655    _2
$a časopisecké články $7 D016428
700    1_
$a Grulyová, Michaela $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
700    1_
$a Hradilová, Miluše $u Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
700    1_
$a Zemlianski, Viacheslav $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia $1 https://orcid.org/0009000476199287
700    1_
$a Princová, Jarmila $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia $1 https://orcid.org/0000000316569800
700    1_
$a Převorovský, Martin $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia $1 https://orcid.org/0000000302778361
773    0_
$w MED00008920 $t PLoS genetics $x 1553-7404 $g Roč. 20, č. 12 (2024), s. e1011509
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39652606 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104023 $b ABA008
999    __
$a ok $b bmc $g 2263062 $s 1239072
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 20 $c 12 $d e1011509 $e 20241209 $i 1553-7404 $m PLoS genetics $n PLoS Genet $x MED00008920
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...