The effects of light-induced reduction of the photosystem II reaction center
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Photosystem II Protein Complex chemistry metabolism MeSH
- Protein Conformation radiation effects MeSH
- Models, Molecular MeSH
- Oxidation-Reduction radiation effects MeSH
- Cyanobacteria metabolism MeSH
- Spectrophotometry methods MeSH
- Light * MeSH
- Hot Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Photosystem II Protein Complex MeSH
- photosystem II, psbA subunit MeSH Browser
Accumulation of reduced pheophytin a (Pheo-D1) in photosystem II reaction center (PSII RC) under illumination at low redox potential is accompanied by changes in absorbance and circular dichroism spectra. The temperature dependences of these spectral changes have the potential to distinguish between changes caused by the excitonic interaction and temperature-dependent processes. We observed a conformational change in the PSII RC protein part and changes in the spatial positions of the PSII RC pigments of the active D1 branch upon reduction of Pheo-D1 only in the case of high temperature (298 K) dynamics. The resulting absorption difference spectra of PSII RC models equilibrated at temperatures of 77 K and 298 K were highly consistent with our previous experiments in which light-induced bleaching of the PSII RC absorbance spectrum was observable only at 298 K. These results support our previous hypothesis that Pheo-D1 does not interact excitonically with the other chlorins of the PSII RC, since the reduced form of Pheo-D1 causes absorption spectra bleaching only due to temperature-dependent processes.
See more in PubMed
Clin Exp Pharmacol Physiol. 2006 Oct;33(10):893-903 PubMed
Biophys J. 2006 May 1;90(9):3062-73 PubMed
Trends Biochem Sci. 1995 Sep;20(9):374 PubMed
J Phys Chem B. 1998 Apr 30;102(18):3586-616 PubMed
Biophys J. 2003 Feb;84(2 Pt 1):1161-79 PubMed
Biochim Biophys Acta. 2002 Jul 1;1554(3):147-52 PubMed
Photosynth Res. 2005 Jun;84(1-3):297-302 PubMed
J Am Chem Soc. 2006 Jan 11;128(1):125-30 PubMed
Biophys J. 2004 Sep;87(3):1650-6 PubMed
Nature. 2001 Feb 8;409(6821):739-43 PubMed
Eur Biophys J. 2006 Aug;35(6):459-67 PubMed
Proc Natl Acad Sci U S A. 1995 May 23;92(11):4798-802 PubMed
Biophys J. 2001 Jan;80(1):331-46 PubMed
Nature. 2005 Dec 15;438(7070):1040-4 PubMed
Biophys J. 2003 Nov;85(5):3173-86 PubMed
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):98-103 PubMed
Nature. 1998 Nov 19;396(6708):283-6 PubMed
Science. 2004 Mar 19;303(5665):1831-8 PubMed
Photosynth Res. 2000;63(3):195-208 PubMed
Biophys J. 2005 Feb;88(2):986-98 PubMed
Biochemistry. 1996 Jan 23;35(3):829-42 PubMed
Biochemistry. 2003 Aug 5;42(30):8976-87 PubMed
J Mol Graph. 1990 Mar;8(1):52-6, 29 PubMed
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):946-51 PubMed
J Comput Chem. 2003 Jan 30;24(2):129-42 PubMed
Proteins. 2004 Dec 1;57(4):678-83 PubMed