Molecular characterization of intervening sequences in 23S rRNA genes and 23S rRNA fragmentation in Taylorella equigenitalis
Language English Country United States Media print-electronic
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Genes, Bacterial * MeSH
- RNA, Bacterial genetics MeSH
- Species Specificity MeSH
- Gram-Negative Bacterial Infections microbiology veterinary MeSH
- Introns genetics MeSH
- Horses MeSH
- Nucleic Acid Conformation MeSH
- Consensus Sequence MeSH
- Molecular Sequence Data MeSH
- Horse Diseases microbiology MeSH
- RNA Processing, Post-Transcriptional * MeSH
- RNA, Ribosomal, 23S genetics MeSH
- Base Sequence MeSH
- Sequence Homology, Nucleic Acid MeSH
- Sequence Alignment MeSH
- Taylorella equigenitalis genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- RNA, Bacterial MeSH
- RNA, Ribosomal, 23S MeSH
Using two primer pairs constructed in silico for the amplification of the intervening sequences (IVSs) of the 23S rRNA gene sequences of the genus Taylorella, none of the three representative T. equigenitalis strains NCTC11184(T), Kentucky 188 and EQ59 was shown to contain any IVSs in the first quarter region. In the central region, all three strains possessed one approximately 70 bp IVS (TeIVS2) different from any IVSs found in T. asinigenitalis. The predicted secondary structure model of the IVSs contained stem and loop structures. The central region of the IVS-stem structure contains an identical double-stranded consensus 15-bp sequence. The purified RNA fraction from the three strains contained 16S and 4-5S RNA species but no 23S rRNA species. Thus, the primary 23S rRNA transcripts from the three strains would be cleaved into approximately 1.2- and 1.6-kb rRNA fragments and approximately 70-bp IVS. In addition, 16 other T. equigenitalis isolates were found to carry a similar 70-bp IVS in the central region and to produce fragmented 23S rRNA.
See more in PubMed
Vet Res Commun. 2001 Oct;25(7):565-75 PubMed
BMC Vet Res. 2006 Jan 06;2:1 PubMed
J Am Vet Med Assoc. 2000 Jun 15;216(12):1945-8 PubMed
Vet Rec. 1977 May 28;100(22):476 PubMed
Aust Vet J. 2000 Jan;78(1):56-7 PubMed
Tijdschr Diergeneeskd. 1989 Feb 15;114(4):189-201 PubMed
Antonie Van Leeuwenhoek. 2007 Aug;92(2):257-64 PubMed
J Bacteriol. 1994 Aug;176(15):4761-5 PubMed
J Bacteriol. 1994 Feb;176(4):1121-7 PubMed
J Clin Microbiol. 1994 Apr;32(4):893-6 PubMed
J Bacteriol. 2001 Oct;183(19):5782-7 PubMed
Nucleic Acids Res. 2005 Sep 16;33(16):5262-70 PubMed
Int J Syst Evol Microbiol. 2001 May;51(Pt 3):971-976 PubMed
Res Vet Sci. 2007 Feb;82(1):47-9 PubMed
Cell. 1989 May 19;57(4):525-9 PubMed
Int J Syst Bacteriol. 1993 Jul;43(3):618-21 PubMed
Vet Res Commun. 2006 May;30(4):343-55 PubMed
Antonie Van Leeuwenhoek. 1998 Jan;73(1):55-67 PubMed
J Bacteriol. 1996 Apr;178(8):2272-8 PubMed
Int J Syst Bacteriol. 1998 Apr;48 Pt 2:431-40 PubMed
Mol Microbiol. 1994 Oct;14(2):235-41 PubMed
Vet Microbiol. 2006 Sep 10;116(4):294-300 PubMed
Cell. 1990 Feb 9;60(3):405-14 PubMed
Equine Vet J. 1978 Jul;10(3):136-44 PubMed
Proc Natl Acad Sci U S A. 1978 Oct;75(10):4801-5 PubMed
FEMS Immunol Med Microbiol. 1998 Nov;22(3):217-24 PubMed
J Bacteriol. 1995 Dec;177(23):6993-8 PubMed
Vet Res Commun. 1995;19(4):265-71 PubMed
J Bacteriol. 1994 Aug;176(15):4597-609 PubMed
J Bacteriol. 2000 Feb;182(4):1109-17 PubMed
Vet Microbiol. 2003 Dec 2;97(1-2):111-22 PubMed