Degrading ability of oligocyclic aromates by Phanerochaete sordida selected via screening of white rot fungi
Language English Country United States Media print-electronic
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Coloring Agents MeSH
- Basidiomycota classification genetics growth & development metabolism MeSH
- Biodegradation, Environmental MeSH
- DNA, Fungal analysis genetics MeSH
- Phenanthrenes metabolism MeSH
- Fluorenes metabolism MeSH
- Culture Media MeSH
- DNA, Ribosomal Spacer analysis genetics MeSH
- Molecular Sequence Data MeSH
- Peroxidases metabolism MeSH
- Phanerochaete classification genetics growth & development metabolism MeSH
- Polycyclic Aromatic Hydrocarbons metabolism MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Coloring Agents MeSH
- DNA, Fungal MeSH
- Phenanthrenes MeSH
- fluoranthene MeSH Browser
- Fluorenes MeSH
- Culture Media MeSH
- manganese peroxidase MeSH Browser
- DNA, Ribosomal Spacer MeSH
- Peroxidases MeSH
- phenanthrene MeSH Browser
- Polycyclic Aromatic Hydrocarbons MeSH
Seventy-nine white rot strains were screened to determine if they had the potential for use in the degradation of oligocyclic aromates (PAHs) by measuring their dye-decoloration rate. Fourteen strains that were selected based on their dye-decoloration rate were then evaluated for the ability to tolerate various levels of PAHs spiked in agar medium. The ability of white rot fungi to degrade 3- or 4-ring PAHs (anthracene, phenanthrene, fluoranthene, pyrene) was determined. Two strains of Phanerochaete sordida (KUC8369, KUC8370) were possible PAHs degraders, degrading a significantly greater amount of phenanthrene and fluoranthene than the culture collection strain P. chrysosporium (a known PAHs degrader). The production of manganese peroxidase, the only extracellular ligninolytic enzyme detected during the cultivation, was evaluated.
See more in PubMed
Appl Microbiol Biotechnol. 2003 Oct;62(5-6):601-7 PubMed
Appl Environ Microbiol. 1994 Oct;60(10):3602-7 PubMed
Nat Genet. 1994 Feb;6(2):119-29 PubMed
J Environ Sci (China). 2008;20(1):88-93 PubMed
Mol Ecol. 1993 Apr;2(2):113-8 PubMed
J Hazard Mater. 2009 Sep 30;169(1-3):1-15 PubMed
J Biol Chem. 1986 Dec 25;261(36):16948-52 PubMed
Appl Environ Microbiol. 1989 Jan;55(1):154-8 PubMed
Water Sci Technol. 2002;46(11-12):195-201 PubMed
Appl Environ Microbiol. 1990 Nov;56(11):3519-26 PubMed
Appl Microbiol Biotechnol. 2008 Dec;81(3):399-417 PubMed
J Hazard Mater. 2009 May 30;164(2-3):911-7 PubMed
Chem Biol Interact. 1986 Feb;57(2):203-16 PubMed
Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 PubMed
Appl Environ Microbiol. 1996 Jan;62(1):292-5 PubMed
Mycol Res. 2003 Sep;107(Pt 9):1032-40 PubMed
Antonie Van Leeuwenhoek. 2005 Feb;87(2):109-17 PubMed
Bioresour Technol. 2007 Jan;98(2):273-80 PubMed
Appl Environ Microbiol. 1994 Oct;60(10):3597-601 PubMed
Folia Microbiol (Praha). 2008;53(4):289-94 PubMed
Mycorrhiza. 2006 Sep;16(6):397-405 PubMed
GENBANK
EU047803, EU407804, EU407805, EU407806