Molecular evidence of Plesiomonas shigelloides as a possible zoonotic agent
Language English Country United States Media print-electronic
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Genetic Variation MeSH
- Gram-Negative Bacterial Infections microbiology transmission veterinary MeSH
- DNA, Intergenic MeSH
- Humans MeSH
- Environmental Microbiology MeSH
- Molecular Typing methods MeSH
- Inverted Repeat Sequences MeSH
- Plesiomonas classification genetics isolation & purification MeSH
- Electrophoresis, Gel, Pulsed-Field methods MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Random Amplified Polymorphic DNA Technique methods MeSH
- Zoonoses microbiology transmission MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Intergenic MeSH
The most frequently used method for establishing epidemiological relationships between Plesiomonas shigelloides strains is O:H serotyping. However, a number of strains are not serotypeable and isolates from diverse sources can display the same serovar. Moreover, since the zoonotic nature of Plesiomonas has been suggested and this hypothesis is based on the identical serovars found in animals and humans, we intend to use four DNA-based techniques: random amplified polymorphic DNA-PCR, enterobacterial repetitive intergenic consensus-PCR, repetitive extragenic palindromic-PCR, and pulsed field gel electrophoresis in order to screen 24 strains belonging to nine O:H serovars isolated from humans, animals, and the environment. In general, P. shigelloides showed a high genetic heterogeneity. Three pairs of strains, each containing a human and an animal isolate, displayed similar genotypes. This is the first report that provides molecular evidence that P. shigelloides may be zoonotic.
See more in PubMed
Kansenshogaku Zasshi. 1999 Feb;73(2):110-21 PubMed
Zentralbl Bakteriol. 1994 Jun;281(1):38-44 PubMed
J Clin Microbiol. 2002 Mar;40(3):959-64 PubMed
J Hyg Epidemiol Microbiol Immunol. 1971;15(4):402-4 PubMed
Folia Microbiol (Praha). 2010 Nov;55(6):641-7 PubMed
Epidemiol Infect. 2000 Dec;125(3):523-30 PubMed
Comp Immunol Microbiol Infect Dis. 2000 Jan;23(1):45-51 PubMed
Jpn J Med Sci Biol. 1978 Apr;31(2):135-42 PubMed
J Hyg (Lond). 1980 Apr;84(2):203-11 PubMed
Pediatr Hematol Oncol. 1996 May-Jun;13(3):265-9 PubMed
J Clin Microbiol. 1999 Jun;37(6):1661-9 PubMed
Mem Inst Oswaldo Cruz. 1995 Jan-Feb;90(1):1-4 PubMed
South Med J. 1978 Apr;71(4):474-6 PubMed
FEMS Immunol Med Microbiol. 2000 Oct;29(2):107-13 PubMed
Lancet. 1982 Mar 27;1(8274):739 PubMed
Nucleic Acids Res. 1991 Dec 25;19(24):6823-31 PubMed
Vet Rec. 2000 Apr 1;146(14):411 PubMed
Can J Vet Res. 1999 Jul;63(3):170-6 PubMed
Vet Rec. 2000 Mar 4;146(10):296 PubMed
Cent Eur J Public Health. 1997 Mar;5(1):21-3 PubMed
Appl Environ Microbiol. 2001 Jul;67(7):3115-21 PubMed
Scand J Infect Dis. 1995;27(5):495-8 PubMed
Rev Cubana Med Trop. 2000 Jan-Apr;52(1):10-4 PubMed
J Clin Microbiol. 1995 Sep;33(9):2233-9 PubMed
J Food Prot. 1999 Nov;62(11):1270-7 PubMed
Bull Soc Pathol Exot Filiales. 1980 Mar-Apr;73(2):139-49 PubMed