Electrochemical behavior and determination of rutin on modified carbon paste electrodes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22654602
PubMed Central
PMC3361259
DOI
10.1100/2012/394756
Knihovny.cz E-zdroje
- MeSH
- elektrochemie metody MeSH
- elektrody * MeSH
- Fagopyrum chemie MeSH
- molekulární struktura MeSH
- rutin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rutin MeSH
The performances of ionic liquid (1-hexyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide, IL/CPE) and iron phthalocyanine (IP/CPE) modified carbon paste electrodes in electroanalytical determinations of rutin were evaluated and compared to the performance of unmodified carbon paste electrode (CPE). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), differential pulse adsorptive stripping voltammetry (DPAdSV), and amperometry were used for rutin analysis. The best current responses of rutin were obtained at pH 4.0 for all tested techniques. IL/CPE electrode was found to perform best with DPAdSV technique, where a detection limit (LOD) as low as 5 nmol L(-1) of rutin was found. On the other hand, IP/CPE showed itself to be an optimum choice for DPV technique, where LOD of 80 nmol L(-1) was obtained. Analytical applicability of newly prepared electrodes was demonstrated on determination of rutin in the model samples and the extracts of buckwheat seeds. To find an optimum method for buckwheat seeds extraction, a boiling water extraction (BWE), Soxhlet extraction (SE), pressurized solvent extraction (PSE), and supercritical fluid extraction (SFE) were tested.
Zobrazit více v PubMed
Yang J, Guo J, Yuan J. In vitro antioxidant properties of rutin. LWT—Food Science and Technology. 2008;41(6):1060–1066.
Florek E, Ignatowicz E, Wrzosek J, Piekoszewski W. Effect of rutin on total antioxidant status of rats exposed to cigarette smoke. Pharmacological Reports. 2005;57(1):84–89. PubMed
Bojňanská T, Frančáková H, Chlebo P, Vollmannová A. Rutin content in buckwheat enriched bread and influence of its consumption on plasma total antioxidant status. Czech Journal of Food Sciences. 2009;27:S236–S240.
Liu Q, Cai W, Shao X. Determination of seven polyphenols in water by high performance liquid chromatography combined with preconcentration. Talanta. 2008;77(2):679–683.
Chen G, Zhang H, Ye J. Determination of rutin and quercetin in plants by capillary electrophoresis with electrochemical detection. Analytica Chimica Acta. 2000;423(1):69–76.
Hassan HNA, Barsoum BN, Habib IHI. Simultaneous spectrophotometric determination of rutin, quercetin and ascorbic acid in drugs using a Kalman Filter approach. Journal of Pharmaceutical and Biomedical Analysis. 1999;20(1-2):315–320. PubMed
Song Z, Hou S. Sensitive determination of sub-nanogram amounts of rutin by its inhibition on chemiluminescence with immobilized reagents. Talanta. 2002;57(1):59–67. PubMed
Ghica ME, Brett AMO. Electrochemical oxidation of rutin. Electroanalysis. 2005;17(4):313–318.
Alkire RC, Kolb DM, Lipkowski J, Ross P. Chemically Modified Electrodes. Weinheim, Germany: Wiley; 2009.
Kalcher K. Chemically modified carbon paste electrodes in voltammetric analysis. Electroanal. 1990;2:419–433.
Zhang Y, Zheng JB. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochimica Acta. 2007;52(25):7210–7216.
Musameh M, Wang J. Sensitive and stable amperometric measurements at ionic liquid-carbon paste microelectrodes. Analytica Chimica Acta. 2008;606(1):45–49. PubMed
Maleki N, Safavi A, Tajabadi F. Investigation of the role of ionic liquids in imparting electrocatalytic behavior to carbon paste electrode. Electroanalysis. 2007;19(21):2247–2250.
Sun W, Yang M, Jiao K. Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Analytical and Bioanalytical Chemistry. 2007;389(4):1283–1291. PubMed
Sun W, Yang M, Gao R, Jiao K. Electrochemical determination of ascorbic acid in room temperature ionic liquid BPPF6 modified carbon paste electrode. Electroanalysis. 2007;19(15):1597–1602.
Wei D, Ivaska A. Applications of ionic liquids in electrochemical sensors. Analytica Chimica Acta. 2008;607(2):126–135. PubMed
Franzoi AC, Migowski P, Dupont J, Vieira IC. Development of biosensors containing laccase and imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid for the determination of rutin. Analytica Chimica Acta. 2009;639(1-2):90–95. PubMed
Zhang Y, Zheng J. Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode. Talanta. 2008;77(1):325–330. PubMed
Sun W, Yang M, Li Y, Jiang Q, Liu S, Jiao K. Electrochemical behavior and determination of rutin on a pyridinium-based ionic liquid modified carbon paste electrode. Journal of Pharmaceutical and Biomedical Analysis. 2008;48(5):1326–1331. PubMed
Wang Y, Xiong H, Zhang X, Wang S. Detection of rutin at DNA modified carbon paste electrode based on a mixture of ionic liquid and paraffin oil as a binder. Microchimica Acta. 2010;170(1):27–32.
Zhu Z, Sun X, Zhuang X, Zeng Y, Sun W, Huang X. Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin. Thin Solid Films. 2010;519(2):928–933.
Dejmkova H, Zima J, Barek J. Application of carbon paste electrodes with admixed bismuth powder for the determination of 4-amino-3-nitrophenol. In: Vytras K, Kalcher K, Svancara I, editors. Sensing in Electroanalysis. Vol. 3. Pardubice, Czech Republic: University of Pardubice; 2008. pp. 83–89.
Svancara I, Baldrianova L, Tesarova E, Vlcek M, Vytras K, Sotiropoulos S. Microscopic studies with bismuth modified carbon paste electrodes: morphological transformation of bismuth microstructures and related observations. In: Vytras K, Kalcher K, editors. Sensing in Electroanalysis. Vol. 2. Pardubice, Czech Republic: University of Pardubice; 2007. pp. 35–58.
Švancara I, Vytřas K, Bobrowski A, Kalcher K. Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis. Talanta. 2002;58(1):45–55. PubMed
Hrbac J, Halouzka V, Zboril R, Papadopoulos K, Triantis T. Carbon electrodes modified by nanoscopic iron(III) oxides to assemble chemical sensors for the hydrogen pėroxide amperometric detection. Electroanalysis. 2007;19(17):1850–1854.
Karyakin AA, Gitelmacher OV, Karyakina EE. A high-sensitive glucose amperometric biosensor based on Prussian Blue modified electrodes. Analytical Letters. 1994;27:2861–2869.
Karyakin AA, Karyakina EE, Gorton L. The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow. Journal of Electroanalytical Chemistry. 1998;456(1-2):97–104.
Shahrokhian S, Ghalkhani M, Amini MK. Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sensors and Actuators B. 2009;137(2):669–675.
Schachl K, Alemu H, Kalcher K, Ježkova J, Švancara I, Vytřas K. Amperometric determination of hydrogen peroxide with a manganese dioxide-modified carbon paste electrode using flow injection analysis. Analyst. 1997;122(9):985–989.
Beyene NW, Kotzian P, Schachl K, et al. (Bio)sensors based on manganese dioxide-modified carbon substrates: Retrospections, further improvements and applications. Talanta. 2004;64(5):1151–1159. PubMed
Dursun Z, Nişli G. Voltammetric behavior of copper(I)oxide modified carbon paste electrode in the presence of cysteine and ascorbic acid. Talanta. 2004;63(4):873–878. PubMed
Qi X, Baldwin RP. Liquid chromatography and electrochemical detection of organic peroxides by reduction at an iron phthalocyanine chemically modified electrode. Electroanal. 1993;5:547–554.
Chebotareva N, Nyokong T. First-row transition metal phthalocyanines as catalysts for water electrolysis: a comparative study. Electrochimica Acta. 1997;42(23-24):3519–3524.
Shahrokhian S, Ghalkhani M, Amini MK. Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sensors and Actuators B. 2009;137(2):669–675.
Patrascu D, David I, David V, et al. Selective voltammetric determination of electroactive neuromodulating species in biological samples using iron(II) phthalocyanine modified multi-wall carbon nanotubes paste electrode. Sensors and Actuators B. 2011;156(2):731–736.
Michalkiewicz A, Biesaga M, Pyrzynska K. Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. Journal of Chromatography A. 2008;1187(1-2):18–24. PubMed
Kotoucek M. Spectrophotometry of acid-base properties of gallocyanine methyl-ester and its derivatives. Collection of Czechoslovak Chemical Communications. 1975;40:3160–3168.
Currie LA. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) Pure and Applied Chemistry. 1995;67(10):1699–1723.
Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG. Flavonoids as antioxidants. Journal of the American Chemical Society. 1994;116(11):4846–4851.
Kachoosangi RT, Wildgoose GG, Compton RG. Room temperature ionic liquid carbon nanotube paste electrodes: overcoming large capacitive currents using rotating disk electrodes. Electroanalysis. 2007;19(14):1483–1489.
Sorokin AB, Kudrik EV. Phthalocyanine metal complexes: versatile catalysts for selective oxidation and bleaching. Catalysis Today. 2011;159(1):37–46.
Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coordination Chemistry Reviews. 2010;254(23-24):2755–2791.
Morishita T, Yamaguchi H, Degi K. The contribution of polyphenols to antioxidative activity in common buckwheat and Tartary buckwheat grain. Plant Production Science. 2007;10(1):99–104.