Electrochemical behavior of quinoxalin-2-one derivatives at mercury electrodes and its analytical use
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
22666117
PubMed Central
PMC3361246
DOI
10.1100/2012/409378
Knihovny.cz E-resources
- MeSH
- Quinoxalines chemistry MeSH
- Electrochemical Techniques MeSH
- Electrodes * MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Mercury chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Quinoxalines MeSH
- Mercury MeSH
Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in the position 4 precedes the electron acceptance forming a semiquinone radical intermediate which is relatively stable in acidic solutions. Its further reduction is manifested by separated current signal. A positive mesomeric effect of the nonprotonized amino group in the position 7 of the derivative III accelerates the semiquinone reduction yielding a single current wave. The suggested reaction mechanism was verified by means of direct current polarography, differential pulse, cyclic and elimination voltammetry, and coulometry with subsequent GC/MS analysis. The understanding of the mechanism was applied in developing of analytical method for the determination of the studied compounds.
See more in PubMed
Leng F, Chaires JB, Waring MJ. Energetics of echinomycin binding to DNA. Nucleic Acids Research. 2003;31(21):6191–6197. PubMed PMC
May LG, Madine MA, Waring MJ. Echinomycin inhibits chromosomal DNA replication and embryonic development in vertebrates. Nucleic Acids Research. 2004;32(1):65–72. PubMed PMC
El Ashry ESH, Abdel-Rahman AAH, Rashed N, Rasheed HA. Homoacyclovir analogues of unnatural bases and their activity against hepatitis B virus. Pharmazie. 1999;54(12):893–897. PubMed
Kuroya M, Yoshida T, Shiratori O, et al. Studies on quinoxaline antibiotics. 1. General properties and the producing strains. The Journal of Antibiotics. 1961;14:324–329.
Shoji JI, Katagiri K. Studies on quinoxaline antibiotics. II. New antibiotics, triostins A, B and C. The Journal of Antibiotics. 1961;14:335–339. PubMed
Corbaz R, Ettlinger L, Gaumann E, et al. Stoffwechselprodukte Von Actinomyceten. 7. Echinomycin. Helvetica Chimica Acta. 1957;40:199–204.
Leardini R, McNab H, Nanni D. Peroxydicarbonate-mediated oxidation of N-(ortho-aryloxyphenyl) and N-(ortho-arylaminophenyl)aldimines. Tetrahedron. 1995;51(44):12143–12158.
Furlani C. Ricerche polarografiche su sostanze eterocicliche. 2. Gazzetta Chimica Italiana. 1955;85:1646–1667.
Pflegel P, Wagner G. Polarography of 3-alkylquinoxalones. 7. Polarography of heterocyclic compounds. Pharmazie. 1969;24(6):308–314. PubMed
Perin DD. Dissociation Constants of Organic Bases. London, UK: Butterworths; 1965.
Fryšová I, Slouka J, Gucký T. Chemistry of 1,2-dihydro-quinoxaline-2-ones. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Physica, Chemica. 2003;42:71–100.
Ribeiro da Suva MAV, Matos MAR, Rio CMA, Miranda MS, Morais VMF. Thermochemical and theoretical studies of 2-hydroxyquinoxaline, 2,3-dihydroxyquinoxaline, and 2-hydroxy-3-methylquinoxaline. Journal of Physical Chemistry A. 2000;104(28):6644–6648.
Janik B, Elving PJ. Electrochemical reduction of 6-substituted purines correlation with structural and energetic characteristics. Journal of The Electrochemical Society. 1969;116:1087–1097.
Gosser DK. Cyclic Voltammetry. New York, NY, USA: VCH Publishers; 1993.
Kotouček M, Rotreklová R. Polarographisches Verhalten einiger Isorosindonderivate. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Physica, Chemica. 1973;40:75–86.
Nakaya J, Kinoshita H. Controlled-potential electrolysis of polarographically observed phenazine and its mono N-oxide. Bulletin of University of Osaka Prefecture A. 1965;14:83–91.
Heyrovský J, Kůta J. Základy Polarografie. Praha, Czech Republic: ČSAV; 1962.
Stránský Z, Slouková I. Contribution to polarography of semiquinone forming systems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Physica, Chemica. 1965;18:257–262.
Dračka O. Theory of current elimination in linear scan voltammetry. Journal of Electroanalytical Chemistry. 1996;402(1-2):19–28.
Trnková L. Electrochemical elimination methods. Chemicke Listy. 2001;95(9):518–527.
Trnková L, Jelen F, Postbieglová I. Application of elimination voltammetry to the resolution of adenine and cytosine signals in oligonucleotides. I. Homo-oligodeoxynucleotides dA. Electroanalysis. 2003;15(19):1529–1535.
Trnková L. Identification of current nature by elimination voltammetry with linear scan. Journal of Electroanalytical Chemistry. 2005;582(1-2):258–266.