Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23192526
PubMed Central
PMC3683140
DOI
10.1007/s12223-012-0214-6
Knihovny.cz E-resources
- MeSH
- DNA, Fungal chemistry genetics MeSH
- Peptide Elongation Factor 1 genetics MeSH
- Genetic Variation * MeSH
- Haplotypes MeSH
- DNA, Ribosomal Spacer chemistry genetics MeSH
- Microscopy MeSH
- Molecular Sequence Data MeSH
- Multiplex Polymerase Chain Reaction MeSH
- Pleurotus * MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Trichoderma classification cytology genetics isolation & purification MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Poland MeSH
- Names of Substances
- DNA, Fungal MeSH
- Peptide Elongation Factor 1 MeSH
- DNA, Ribosomal Spacer MeSH
The present study includes the molecular characteristics of Trichoderma pleurotum and Trichoderma pleuroticola isolates collected from green moulded cereal straw substrates at 47 oyster mushroom farms in Poland. The screening of the 80 Trichoderma isolates was performed by morphological observation and by using the multiplex PCR assay. This approach enabled specific detection of 47 strains of T. pleurotum and 2 strains of T. pleuroticola. Initial identifications were confirmed by sequencing the fragment of internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) of the rRNA gene cluster and the fragment including the fourth and fifth introns and the last long exon of the translation-elongation factor 1-alpha (tef1) gene. ITS and tef1 sequence information was also used to establish the intra- and interspecies relationship of T. pleurotum and T. pleuroticola originating from the oyster mushroom farms in Poland and from other countries. Comparative analysis of the ITS sequences showed that all T. pleurotum isolates from Poland represent one haplotype, identical to that of T. pleurotum strains from Hungary and Romania. Sequence analysis of the tef1 locus revealed two haplotypes ("T" and "N") of Polish T. pleurotum isolates. The "T" type isolates of T. pleurotum were identical to those of strains from Hungary and Romania. The "N" type isolates possessed a unique tef1 allele. Detailed analysis of the ITS and tef1 sequences of two T. pleuroticola isolates showed their identicalness to Italian strain C.P.K. 1540.
See more in PubMed
Błaszczyk L, Popiel D, Chełkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M. Species diversity of Trichoderma in Poland. J Appl Genetics. 2011;52:233–243. doi: 10.1007/s13353-011-0039-z. PubMed DOI PMC
Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553–556. doi: 10.2307/3761358. DOI
Chełkowski J, Golka L, Stępień Ł. Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J App Genet. 2003;44:323–338. PubMed
Doohan FM, Parry DW, Jenkinson P, Nicholson P. The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheat. Plant Pathol. 1998;47:197–205. doi: 10.1046/j.1365-3059.1998.00218.x. DOI
Druzhinina IS, Kopchinskiy AG, Komon M, Bissett J, Szakacs G, Kubicek CP. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol. 2005;42:813–828. doi: 10.1016/j.fgb.2005.06.007. PubMed DOI
Gea FJ. First report of Trichoderma pleurotum on oyster mushroom crops in Spain. J Plant Pathol. 2009;91:504.
Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vágvölgyi C, Kredics L. Green mould diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology. 2007;97:532–537. doi: 10.1094/PHYTO-97-4-0532. PubMed DOI
Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS. Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia. 2005;97:1365–1378. doi: 10.3852/mycologia.97.6.1365. PubMed DOI
Komon-Zelazowska M, Bisset J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorito M, Kredics L, Kubicek CP, Druzhinina IS. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol. 2007;73:7415–7426. doi: 10.1128/AEM.01059-07. PubMed DOI PMC
Kopchinskiy A, Komon M, Kubicek CP, Druzhinina IS. TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol Res. 2005;109:657–660. doi: 10.1017/S0953756205233397. PubMed DOI
Kredics L, Hatvani L, Antal Z, Manczinger L, Druzhinina IS, Kubicek CP, Szekeres A, Nagy A, Vágvölgyi C, Nagy E. Green mould disease of oyster mushroom in Hungary and Transylvania. Acta Microbiol Immunol Hung. 2006;53:306–307.
Kredics L, Kocsube S, Nagy L, Komon-Zelazowska M, Manczinger L, Sajben E, Nagy A, Vagvolgyi C, Kubicek CP, Druzhinina IS, Hatvani L. Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. Microb Lett. 2009;300:58–67. doi: 10.1111/j.1574-6968.2009.01765.x. PubMed DOI
Muthumeenakshi S, Brown AE, Mills PR. Genetic comparison of the aggressive weed mould strains of Trichoderma harzianum from mushroom compost in North America and the British Isles. Mycol Res. 1998;102:385–390. doi: 10.1017/S0953756297004759. DOI
Park MS, Bae KS, Yu SH. Molecular and morphological analysis of Trichoderma isolates associated with green mold epidemic of oyster mushroom in Korea. J Huazhong Agric Univ. 2004;23:157–164.
Park MS, Bae KS, Yu SH (2004b) Morphological and molecular analysis of Trichoderma species associated with green mold epidemic of oyster mushroom in Korea. New Challenges in Mushroom Science. Proceedings of the 3rd Meeting of Far East Asia for Collaboration on Edible Fungi Research, Suwon, Korea, pp 143–158
Park MS, Bae KS, Yu SH. Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology. 2006;34:111–113. doi: 10.4489/MYCO.2006.34.3.111. PubMed DOI PMC
Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia. 2002;94:146–170. doi: 10.2307/3761854. PubMed DOI
Szekeres A, Kredics L, Antal Z, Hatvani L, Manczinger L, Vágvölgyi C. Genetic diversity of Trichoderma strains isolated from winter wheat rhizosphere in Hungary. Acta Microbiol Immunol Hung. 2005;52:156. doi: 10.1556/AMicr.52.2005.2.2. PubMed DOI
Sharma SR, Vijay B. Yield loss in Pleurotus ostreatus spp. caused by Trichoderma viride. Mushroom Res. 1996;5:19–22.
Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic; 1990. pp. 315–322.
Woo SL, Di Benedetto P, Senatore M, Abadi K, Gigante S, Soriente I, Ferraioli S, Scala F, Lorito M. Identification and characterization of Trichoderma species aggressive to Pleurotus in Italy. J Zhejiang Univ Agric Life Sci. 2004;30:469–470.