Mitochondrial capture misleads about ecological speciation in the Daphnia pulex complex
Language English Country United States Media electronic-print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23869244
PubMed Central
PMC3711805
DOI
10.1371/journal.pone.0069497
PII: PONE-D-13-07954
Knihovny.cz E-resources
- MeSH
- Daphnia classification genetics MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- DNA, Mitochondrial chemistry MeSH
- Recombination, Genetic MeSH
- Sequence Analysis, DNA MeSH
- Gene Flow MeSH
- Genetic Speciation * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
The North American ecological species Daphniapulicaria and Daphniapulex are thought to have diverged from a common ancestor by adaptation to sympatric but ecologically distinct lake and pond habitats respectively. Based on mtDNA relationships, European D. pulicaria is considered a different species only distantly related to its North American counterpart, but both species share a lactate dehydrogenase (Ldh) allele F supposedly involved in lake adaptation in North America, and the same allele is also carried by the related Holarctic Daphniatenebrosa. The correct inference of the species' ancestral relationships is therefore critical for understanding the origin of their adaptive divergence. Our species tree inferred from unlinked nuclear loci for D. pulicaria and D. pulex resolved the European and North American D. pulicaria as sister clades, and we argue that the discordant mtDNA gene tree is best explained by capture of D. pulex mtDNA by D. pulicaria in North America. The Ldh gene tree shows that F-class alleles in D. pulicaria and D. tenebrosa are due to common descent (as opposed to introgression), with D. tenebrosa alleles paraphyletic with respect to D. pulicaria alleles. That D. tenebrosa still segregates the ancestral and derived amino acids at the two sites distinguishing the pond and lake alleles suggests that D. pulicaria inherited the derived states from the D. tenebrosa ancestry. Our results suggest that some adaptations restricting the gene flow between D. pulicaria and D. pulex might have evolved in response to selection in ancestral environments rather than in the species' current sympatric habitats. The Arctic (D. tenebrosa) populations are likely to provide important clues about these issues.
See more in PubMed
Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8: 336–352. doi:10.1111/j.1461-0248.2004.00715.x. DOI
Rundle HD, Schluter D (2004) Natural Selection and Ecological Speciation in Sticklebacks. In: Dieckmann U, Doebeli M, Metz JAJ, Tautz D. Adaptive Speciation. Cambridge University Press; pp. 192–209.
Aguilée R, Lambert A, Claessen D (2011) Ecological speciation in dynamic landscapes. J Evolution Biol 24: 2663–2677. doi:10.1111/j.1420-9101.2011.02392.x. PubMed: 21954829. PubMed DOI
Gavrilets S (2003) Models of speciation: what have we learned in 40 years? Evolution 57: 2197–2215. doi:10.1554/02-727. PubMed: 14628909. PubMed DOI
Rice WR, Hostert EE (1993) Laboratory experiments on speciation: what have we learned in 40 years. Evolution 47: 1637–1653. doi:10.2307/2410209. PubMed DOI
Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: Models and empirical evidence. Annu Rev Ecol Evol S 38: 459–487.
Clarke B, Johnson MS, Murray J (1996) Clines in the genetic distance between two species of island land snails: how ‘molecular leakage’ can mislead us about speciation. Philos T Roy Soc B 351: 73–784.
Jordal BH, Emerson BC, Hewitt GM (2006) Apparent ‘sympatric’ speciation in ecologically similar herbivorous beetles facilitated by multiple colonizations of an island. Mol Ecol 15: 2935–2947. doi:10.1111/j.1365-294X.2006.02993.x. PubMed: 16911212. PubMed DOI
Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MA: pp. 545.
Omilian AR, Lynch M (2009) Patterns of interspecific DNA variation in the Daphnia nuclear genome. Genetics 182: 325–336. doi:10.1534/genetics.108.099549. PubMed: 19304589. PubMed DOI PMC
Cristescu ME, Constantin A, Bock DG, Cáceres CE, Crease TJ (2012) Speciation with gene flow and the genetics of habitat transitions. Mol Ecol 21: 1411–1422. doi:10.1111/j.1365-294X.2011.05465.x. PubMed: 22269101. PubMed DOI
Dudycha JL, Tessier AJ (1999) Natural genetic variation of life span, reproduction, and juvenile growth in Daphnia . Evolution 53: 1744–1756. doi:10.2307/2640437. PubMed DOI
Dudycha JL (2004) Mortality dynamics of Daphnia in contrasting habitats and their role in ecological divergence. Freshw Biol 49: 505–514. doi:10.1111/j.1365-2427.2004.01201.x. DOI
Hrbáčková-Esslová M (1966) The development of three species of Daphnia in the surface water of the Slapy Reservoir. Int Rev Gesamten Hydrobiol 48: 325–333.
Hrbáček J (1977) Competition and predation in relation to species composition of freshwater zooplankton, mainly Cladocera. In: Cairs J jr. Aquatic microbial communities. Garland Reference Library of Science and Technology, New York, USA. pp. 305–353.
Dudycha JL (2003) A multi-environment comparison of senescence between sister species of Daphnia . Oecologia 135: 555–563. PubMed: 16228255. PubMed
Heier CR, Dudycha JL (2009) Ecological speciation in a cyclic parthenogen: sexual capability of experimental hybrids between Daphnia pulex and D. pulicaria . Limnol Oceanogr 54: 492–502. doi:10.4319/lo.2009.54.2.0492. DOI
Benzie JAH (2005) Cladocera: The Genus Daphnia (including Daphniopsis). Kenobi. Productions. Ghent, Leiden: Backhuys Publishers; pp. 376.
Mergeay J, Aguilera X, Declerck S, Petrusek A, Huyse T et al. (2008) The genetic legacy of polyploid Bolivian Daphnia: the tropical Andes as a source for the North and South American D. pulicaria complex. Mol Ecol 17: 1789–1800. doi:10.1111/j.1365-294X.2007.03679.x. PubMed: 18284570. PubMed DOI
Colbourne JK, Crease TJ, Weider LJ, Hebert PDN, Dufresne F et al. (1998) Phylogenetics and evolution of the circumarctic species complex (Cladocera: Daphnia pulex). Biol J Linn Soc 65: 347–365. doi:10.1006/bijl.1998.0251. DOI
Weider LJ, Hobaek A, Colbourne JK, Crease TJ, Dufresne F et al. (1999a) Holarctic phylogeography of an asexual species complex I. Mitochondrial DNA variation in arctic Daphnia . Evolution 53: 777–792. doi:10.2307/2640718. PubMed DOI
Omilian AR, Scofield DG, Lynch M (2008) Intron presence-absence polymorphisms in Daphnia . Mol Biol Evol 25: 2129–2139. doi:10.1093/molbev/msn164. PubMed: 18667441. PubMed DOI PMC
Vergilino R, Markova S, Ventura M, Manca M, Dufresne F (2011) Reticulate evolution of the Daphnia pulex complex as revealed by nuclear markers. Mol Ecol 20: 1191–1207. doi:10.1111/j.1365-294X.2011.05004.x. PubMed: 21294799. PubMed DOI
Crease TJ, Floyd R, Cristescu ME, Innes D (2011) Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex. BMC Evol Biol 11: 212. doi:10.1186/1471-2148-11-212. PubMed: 21767386. PubMed DOI PMC
Weider LJ, Hobæk A (1997) Postglacial dispersal, glacial refugia, and clonal structure in Russian/Siberian populations of the arctic Daphnia pulex complex. Heredity 78: 363–372. doi:10.1038/hdy.1997.59. DOI
Černý M, Hebert PDN (1999) Intercontinental allozyme differentiation among four holarctic Daphnia species. Limnol Oceanogr 44: 1381–1387. doi:10.4319/lo.1999.44.6.1381. DOI
Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A et al. (2011) The ecoresponsive genome of Daphnia pulex . Science 331: 555–556. doi:10.1126/science.1197761. PubMed: 21292972. PubMed DOI PMC
Weider LJ, Hobæk A (2003) Glacial refugia, haplotype distributions, and clonal richness in the Daphnia pulex complex in arctic Canada. Mol Ecol 12: 463–473. doi:10.1046/j.1365-294X.2003.01746.x. PubMed: 12535096. PubMed DOI
Černý M (1995) Genetic variation in temperate populations of Daphnia pulex group. [PhD thesis] Charles University, Prague, Czech Republic.
Weider LJ, Hobaek A, Hebert PDN, Crease TJ (1999b) Holarctic phylogeography of an asexual species complex – II. Allozymic variation and clonal structure in Arctic Daphnia . Mol Ecol 8: 1–14. doi:10.1046/j.1365-294X.1999.00893.x. DOI
Heled J, Drummond AJ (2010) Bayesian inference of specie trees from multilocus data. Mol Biol Evol 27: 570–580. doi:10.1093/molbev/msp274. PubMed: 19906793. PubMed DOI PMC
Dufresne F, Marková S, Vergilino R, Ventura M, Kotlík P (2011) Diversity in the reproductive modes of European Daphnia pulicaria deviates from the geographical parthenogenesis. PLOS ONE 6: e20049. doi:10.1371/journal.pone.0020049. PubMed: 21655327. PubMed DOI PMC
Cronn R, Cedroni M, Haselkorn T, Grover C, Wendel JF (2002) PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Genet 104: 482–489. doi:10.1007/s001220100741. PubMed: 12582722. PubMed DOI
Maddison DR, Maddison WP (2003) MacClade: Analysis of phylogeny and character evolution, Version 4.08. Sunderland, MA: Sinauer Associates.
Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497. doi:10.1093/bioinformatics/btg359. PubMed: 14668244. PubMed DOI
Hey J, Wakeley J (1997) A coalescent estimator of the population recombination rate. Genetics 145: 833–846. PubMed: 9055092. PubMed PMC
Martin DP, Lemey P, Posada D (2011) Analysing recombination in nucleotide sequences. Mol Ecol Resour 11: 943–955. doi:10.1111/j.1755-0998.2011.03026.x. PubMed: 21592314. PubMed DOI
Martin DP, Lemey P, Lott M, Moulton V, Posada D et al. (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26: 2462–2463. doi:10.1093/bioinformatics/btq467. PubMed: 20798170. PubMed DOI PMC
Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562–563. doi:10.1093/bioinformatics/16.6.562. PubMed: 10980155. PubMed DOI
Sawyer S (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6: 526–538. PubMed: 2677599. PubMed
Maynard Smith J (1992) Analyzing the mosaic structure of genes. J Mol Evol 34: 126–129. PubMed: 1556748. PubMed
Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retrov 21: 98–102. PubMed
Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16: 573–582. doi:10.1093/bioinformatics/16.7.573. PubMed: 11038328. PubMed DOI
Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176: 1035-1047. PubMed: 17409078. PubMed PMC
Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98: 13757–13762. doi:10.1073/pnas.241370698. PubMed: 11717435. PubMed DOI PMC
Holmes EC, Worobey M, Rambaut A (1999) Phylogenetic Evidence for Recombination in Dengue Virus. Mol Biol Evol 16: 405–409. doi:10.1093/oxfordjournals.molbev.a026121. PubMed: 10331266. PubMed DOI
Posada D (2008) jModelTest: Phylogenetic model averaging. Mol Biol Evol 25: 1253–1256. doi:10.1093/molbev/msn083. PubMed: 18397919. PubMed DOI
Zwickl D (2006) Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD thesis, University of Texas at Austin, Austin, Texas, USA.
Hebert PDN, Schwartz SS, Ward RD, Finston TL (1993) Macrogeographic patterns of breeding system diversity in the Daphnia pulex group. I. Breeding systems of Canadian populations. Heredity 70: 148–161. doi:10.1038/hdy.1993.24. PubMed DOI
Maddison WP (1997) Gene trees in species trees. Syst Biol 46: 523–536. doi:10.1093/sysbio/46.3.523. DOI
Maddison WP, Maddison DR (2011) Mesquite: A modular system for evolutionary analysis, Version 2.75. http://mesquiteproject.org.
Xu S, Schaack S, Seyfert A, Choi E, Lynch M et al. (2012) High mutation rates in the mitochondrial genomes of Daphnia pulex . Mol Biol Evol 29: 763–769. doi:10.1093/molbev/msr243. PubMed: 21998274. PubMed DOI PMC
Haag CR, McTaggart SJ, Didier A, Little TJ, Charlesworth D (2009) Nucleotide polymorphism and within-gene recombination in Daphnia magna and Daphnia pulex, two cyclical parthenogens. Genetics 182: 313–323. doi:10.1534/genetics.109.101147. PubMed: 19299338. PubMed DOI PMC
Dufresne F, Hebert PDN (1994) Hybridization and origins of polyploidy. Proc R Soc Lond B 258: 141–146. doi:10.1098/rspb.1994.0154. DOI
Dufresne F, Hebert PDN (1997) Pleistocene glaciations and polyphyletic origins of polyploidy in an arctic cladoceran. Proc R Soc Lond B 264: 201–206.
Crease TJ, Omilian AR, Costanzo KS, Taylor DJ (2012) Transcontinental phylogeography of the Daphnia pulex species complex. PLOS ONE 7: e46620. doi:10.1371/journal.pone.0046620. PubMed: 23056371. PubMed DOI PMC
Glémet H, Blier P, Bernatchez L (1998) Geographical extent of the Arctic char (Salvelinus alpinus) mtDNA introgression in brook charr populations (S. fontinalis) from eastern Quebec, Canada. Mol Ecol 7: 1655–1662. doi:10.1046/j.1365-294x.1998.00494.x. DOI
Good JM, Hird S, Reid N, Demboski JR, Steppan SJ et al. (2008) Ancient hybridization and mitochondrial capture between two species of chipmunks. Mol Ecol 17: 1313–1327. doi:10.1111/j.1365-294X.2007.03640.x. PubMed: 18302691. PubMed DOI
Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 16: 3907–3930. PubMed: 22738314. PubMed
Hilton H, Kliman RM, Hey J (1994) Using hitchhiking genes to study adaptation and divergence during speciation within the Drosophila melanogaster species complex. Evolution 48: 1900–1913. doi:10.2307/2410516. PubMed DOI
Llopart A, Coyne JA, Lachaise D (2005) Multilocus analysis of introgression between two sympatric sister species of Drosophila: D. yakuba and D. santomea . Genetics 171: 197–210. PubMed: 15965264. PubMed PMC
Dufresne F, Hebert PDN (1995) Polyploidy and clonal diversity in an arctic cladoceran. Heredity 75: 45–53.
Cristescu ME, Innes DJ, Stillman JH, Crease TJ (2008) D- and L-lactate dehydrogenases during invertebrate evolution. BMC Evol Biol 8: 268. doi:10.1186/1471-2148-8-268. PubMed: 18828920. PubMed DOI PMC
Pfrender ME, Spitze K, Lehman N (2000) Multi-locus genetic evidence for rapid ecologically based speciation in Daphnia . Mol Ecol 9: 1717–1735. PubMed: 11091309. PubMed
Marková S, Dufresne F, Rees DJ, Černý M, Kotlík P (2007) Cryptic intercontinental colonization in water fleas Daphnia pulicaria inferred from phylogenetic analysis of mitochondrial DNA variation. Mol Phylogenet Evol 44: 42–52. PubMed: 17292634. PubMed
Meyers SC, Liston A, Meinke R (2012) An evaluation of putative sympatric speciation within Limnanthes (Limnanthaceae). PLOS ONE 7: e36480. doi:10.1371/journal.pone.0036480. PubMed: 22563502. PubMed DOI PMC
Divergent clades or cryptic species? Mito-nuclear discordance in a Daphnia species complex