Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24045305
PubMed Central
PMC3791474
DOI
10.1038/ncomms3454
PII: ncomms3454
Knihovny.cz E-resources
- MeSH
- Asteraceae classification physiology MeSH
- Biodiversity MeSH
- Time Factors MeSH
- Plant Dispersal physiology MeSH
- Species Specificity MeSH
- Ecosystem MeSH
- Phylogeny * MeSH
- Phylogeography MeSH
- Adaptation, Physiological MeSH
- Humans MeSH
- Poaceae classification physiology MeSH
- Rosaceae classification physiology MeSH
- Cyperaceae classification physiology MeSH
- Introduced Species MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Species gain membership of regional assemblages by passing through multiple ecological and environmental filters. To capture the potential trajectory of structural changes in regional meta-communities driven by biological invasions, one can categorize species pools into assemblages of different residence times. Older assemblages, having passed through more environmental filters, should become more functionally ordered and structured. Here we calculate the level of compartmentalization (modularity) for three different-aged assemblages (neophytes, introduced after 1500 AD; archaeophytes, introduced before 1500 AD, and natives), including 2,054 species of vascular plants in 302 reserves in central Europe. Older assemblages are more compartmentalized than younger ones, with species composition, phylogenetic structure and habitat characteristics of the modules becoming increasingly distinctive. This sheds light on two mechanisms of how alien species are functionally incorporated into regional species pools: the settling-down hypothesis of diminishing stochasticity with residence time, and the niche-mosaic hypothesis of inlaid neutral modules in regional meta-communities.
See more in PubMed
Bell G. The co-distribution of species in relation to the neutral theory of community ecology. Ecology 86, 1757–1770 (2005).
Drake J. A., Zimmerman C. R., Purucker T. & Rojo C. inEcological Assembly Rules: Perspectives, Advances, Retreats eds Weiher E., Keddy P. 233–250Cambridge University Press (1999).
Cornell H. V. & Lawton J. H. Species interactions, local and regional processes, and limits to the richness of ecological communities - a Theoretical Perspective. J. Anim. Ecol. 61, 1–12 (1992).
Tilman D. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004). PubMed PMC
Richardson D. M. et al. Naturalization and invasion of alien plants - concepts and definitions. Divers. Distribut. 6, 93–107 (2000).
Whittaker R. J., Willis K. J. & Field R. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).
McKinney M. L. & Lockwood J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999). PubMed
Blackburn T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011). PubMed
Pyšek P. et al. Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecol. Monogr. 81, 277–293 (2011).
Hubbell S. P. The Unified Neutral Theory of Biodiversity and Biogeography Princeton University Press (2001). PubMed
Dicks L. V., Corbet S. A. & Pywell R. F. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).
Dupont Y. L. & Olesen J. M. Ecological modules and roles of species in heathland plant-insect flower visitor networks. J. Anim. Ecol. 78, 346–353 (2009). PubMed
Krause A. E., Frank K. A., Mason D. M., Ulanowicz R. E. & Taylor W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003). PubMed
Olesen J. M., Bascompte J., Dupont Y. L. & Jordano P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007). PubMed PMC
Teng J. & McCann K. S. Dynamics of compartmented and reticulate food webs in relation to energetic flows. Am. Nat. 164, 85–100 (2004). PubMed
Newman M. E. J. Networks: An Introduction Oxford University Press (2010).
Clark J. S. Beyond neutral science. Trends Ecol. Evol. 24, 8–15 (2009). PubMed
Rosindell J., Hubbell S. P. & Etienne R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011). PubMed
Rosindell J., Hubbell S. P., He F. L., Harmon L. J. & Etienne R. S. The case for ecological neutral theory. Trends Ecol. Evol. 27, 203–208 (2012). PubMed
Cadotte M. W., Carscadden K. & Mirotchnick N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
Flynn D. F. B., Mirotchnick N., Jain M., Palmer M. I. & Naeem S. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology 92, 1573–1581 (2011). PubMed
Chase J. M. & Myers J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. T. R. Soc. B 366, 2351–2363 (2011). PubMed PMC
Gravel D., Canham C. D., Beaudet M. & Messier C. Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett. 9, 399–409 (2006). PubMed
Scheffer M. & van Nes E. H. Self-organized similarity, the evolutionary emergence of groups of similar species. Proc. Natl Acad. Sci. USA 103, 6230–6235 (2006). PubMed PMC
Pyšek P., Jarošík V. & Kučera T. Patterns of invasion in temperate nature reserves. Biol. Conserv. 104, 13–24 (2002).
Pyšek P. et al. Catalogue of alien plants of the Czech Republic (2nd edn): checklist update, taxonomic diversity and invasion patterns. Preslia 84, 155–255 (2012).
Chytrý M. et al. Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89, 1541–1553 (2008). PubMed
La Sorte F. A. & Pyšek P. Extra-regional residence time as a correlate of plant invasiveness: European archaeophytes in North America. Ecology 90, 2589–2597 (2009). PubMed
Pyšek P. et al. Alien plants in temperate weed communities: Prehistoric and recent invaders occupy different habitats. Ecology 86, 772–785 (2005).
Pickett S. T. A., Cadenasso M. L. & Meiners S. J. Ever since Clements: from succession to vegetation dynamics and understanding to intervention. Appl. Veg. Sci. 12, 9–21 (2009).
Atmar W. & Patterson B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993). PubMed
Bascompte J., Jordano P., Melian C. J. & Olesen J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003). PubMed PMC
Burgos E. et al. Why nestedness in mutualistic networks? J. Theor. Biol. 249, 307–313 (2007). PubMed
Fortuna M. A. & Bascompte J. Habitat loss and the structure of plant-animal mutualistic networks. Ecol. Lett. 9, 278–283 (2006). PubMed
Memmott J., Waser N. M. & Price M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B Biol. Sci. 271, 2605–2611 (2004). PubMed PMC
Allesina S. & Tang S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012). PubMed
James A., Pitchford J. W. & Plank M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012). PubMed
Fortuna M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010). PubMed
Guimera R. et al. Origin of compartmentalization in food webs. Ecology 91, 2941–2951 (2010). PubMed
Stouffer D. B. & Bascompte J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011). PubMed PMC
Richardson D. M. & Pyšek P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409–431 (2006).
Uriarte M. et al. Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly. Ecol. Lett. 13, 1503–1514 (2010). PubMed
McGill B. J. A test of the unified neutral theory of biodiversity. Nature 422, 881–885 (2003). PubMed
Magurran A. E. et al. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010). PubMed
Magurran A. E. & Henderson P. A. Temporal turnover and the maintenance of diversity in ecological assemblages. Philos. T. R. Soc. B 365, 3611–3620 (2010). PubMed PMC
Paini D. R., Worner S. P., Cook D. C., De Barro P. J. & Thomas M. B. Threat of invasive pests from within national borders. Nat. Commun. 1, 115 (2010). PubMed
Newman M. E. J. & Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004). PubMed
Fortunato S. & Barthelemy M. Resolution limit in community detection. Proc. Natl Acad. Sci. USA 104, 36–41 (2007). PubMed PMC
Guimera R. & Amaral L. A. N. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005). PubMed PMC
Guimera R., Sales-Pardo M. & Amaral L. A. N. Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70, 025101 (2004). PubMed PMC
Guimera R., Sales-Pardo M. & Amaral L. A. N. Module identification in bipartite and directed networks. Phys. Rev. E 76, 036102 (2007). PubMed PMC
Guimera R. & Amaral L. A. N. Cartography of complex networks: modules and universal roles. J. Stat. Mech. 2, P02001 (2005). PubMed PMC
Rives A. W. & Galitski T. Modular organization of cellular networks. Proc. Natl Acad. Sci. USA 100, 1128–1133 (2003). PubMed PMC
Han J. D. J. et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 89–93 (2004). PubMed
Tamura K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011). PubMed PMC
Pyšek P., Kučera T. & Jarošík V. Plant species richness of nature reserves: the interplay of area, climate and habitat in a central European landscape. Global Ecol. Biogeogr. 11, 279–289 (2002). PubMed PMC
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org (2012).
Zuur A. E., Ieno E. N., Walker N. J., Saveliev A. A. & Smith G. M. Mixed Effects Models and Extensions in Ecology with R Springer (2009).
Therneau T., Atkinson B. & Ripley B. rpart: Recursive Partitioning. Version 4.1-1, http://CRAN.R-project.org/package=rpartR (2013).