• This record comes from PubMed

Ecological structure of recent and last glacial mammalian faunas in northern Eurasia: the case of Altai-Sayan refugium

. 2014 ; 9 (1) : e85056. [epub] 20140113

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Pleistocene mammalian communities display unique features which differ from present-day faunas. The paleocommunities were characterized by the extraordinarily large body size of herbivores and predators and by their unique structure consisting of species now inhabiting geographically and ecologically distinct natural zones. These features were probably the result of the unique environmental conditions of ice age ecosystems. To analyze the ecological structure of Last Glacial and Recent mammal communities we classified the species into biome and trophic-size categories, using Principal Component analysis. We found a marked similarity in ecological structure between Recent eastern Altai-Sayan mammalian assemblages and comparable Pleistocene faunas. The composition of Last Glacial and Recent eastern Altai-Sayan assemblages were characterized by the occurrence of large herbivore and predator species associated with steppe, desert and alpine biomes. These three modern biomes harbor most of the surviving Pleistocene mammals. None of the analyzed Palearctic Last Glacial faunas showed affinity to the temperate forest, taiga, or tundra biome. The Eastern part of the Altai-Sayan region could be considered a refugium of the Last Glacial-like mammalian assemblages. Glacial fauna seems to persist up to present in those areas where the forest belt does not separate alpine vegetation from the steppes and deserts.

See more in PubMed

Romer AS (1933) Pleistocene vertebrates and their bearing on the problem of human antiquity in North America. In: Jenness D, editor. The American Aborigines: Their Origin and Antiquity. Toronto: University of Toronto Press. pp. 47–84.

Hibbard CW (1949) Pleistocene vertebrate paleontology in North America. Geol Soc Am Bull 60: 1417–1428.

Kurtén B (1968) Pleistocene mammals of Europe. London: Weidenfeld and Nicolson. 352 p.

Guthrie RD (1984) Mosaics, allelochemics and nutrients. An ecological theory of Late Pleistocene megafaunal extinctions. In: Martin PS, Martin RG, editors. Quaternary extinctions: A prehistoric revolution. Tuscon: University of Arizona Press. pp. 259–298.

Vereshchagin NK, Baryshnikov GF (1992) The ecological structure of the “Mammoth Fauna” in Eurasia. Ann Zool Fennici 28: 253–259.

Van Kolfschoten T (1995) On the application of fossil mammals to the reconstruction of the palaeoenviroment of northwestern Europe. Acta Zool Cracov 38: 73–84.

Rodríguez JS (2004) Stability in Pleistocene Mediterranean mammalian communities. Palaeogeogr Palaeoclimatol Palaeoecol 207: 1–22.

Guthrie RD (1990) Frozen fauna of the Mammoth steppe: The story of Blue Babe. Chicago: University of Chicago Press. 323 p.

Musil R (1999) The enviroment in the last Glacial on the territory of Moravia. Acta Musei Moraviae 84: 161–186.

Guthrie RD (2001) Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quaternary Review 20: 549–574.

Stewart JR (2008) The progressive effect of the individualistic response of species to Quaternary climate change: an analysis of British mammalian faunas. Quat Sci Rev 27: 2499–2508.

Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Syst 22: 115–143.

Mendoza M, Goodwin B, Criado C (2004) Emergence of community structure in terrestrial mammal-dominated ecosystems. J Theor Biol 230: 203–214. PubMed

Rodríguez J (2006) Structural continuity and multiple alternative stable States in Middle Pleistocene European mammalian communities. Palaeogeogr Palaeoclimatol Palaeoecol 239: 355–373.

Louys J, Meloro C, Elton S, Ditchfield P, Bishop LC (2011) Mammal community structure correlates with arboreal heterogeneity in faunally and geographically diverse habitats: implications for community convergence. Global Ecol Biogeogr 20: 717–729.

Mendoza M, Janis CJ, Palmqvist P (2005) Ecological patterns in the trophic-size structure of large mammal communities: a ‘taxon-free’ characterization Evol Ecol Res. 7: 505–530.

Blinnikov MS, Gaglioti BV, Walker DA, Wooller MJ, Zazula GD (2011) Pleistocene graminoid-dominated ecosystems in the Arctic. Quat Sci Rev 30: 2906–2929.

Frenzel B, Pécsi M, Velichko AA (1992) Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere. JenaNew York: Geographical Research Institute, Hungarian Academy of Sciences Budapest and Gustav Fischer Verlag Stuttgart. 153 p.

Tarasov PE, Guiot J, Cheddadi R, Andreev AA, Bezusko LG, et al. (1999) Climate in northern Eurasia 6000 years ago reconstructed from pollen data. Earth Planet Sci Lett 171: 635–645.

Tarasov PE, Volkova VS, Webb III T, Guiot J, Andreev AA, et al. (2000) Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeogr 27: 609–620.

Jankovská V, Pokorný P (2008) Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80: 307–324.

Kuneš P, Pelánková B, Chytrý M, Jankovská V, Pokorný P, et al. (2008) Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. J Biogeogr 35: 2223–2236.

Pelánková B, Chytrý M (2009) Surface pollen-vegetation relationships in the forest-steppe, taiga and tundra landscapes of the Russian Altai Mountains. Rev Palaeobot Palyno 157: 253–265.

Horsák M, Chytrý M, Pokryszko BM, Danihelka J, Ermakov N, et al. (2010) Habitats of relict terrestrial snails in southern Siberia: lessons for the reconstruction of palaeoenvironments of full-glacial Europe. J Biogeogr 37: 1450–1462.

Allen JRM, Hickler T, Singarayer JS, Sykes MT, Valdes PJ, et al. (2010) Last glacial vegetation of northern Eurasia. Quat Sci Rev 29: 19–20.

Huntley B, Allen JRM, Collingham YC, Hickler T, Lister AM, jet al (2013) Millennial climatic fluctuations are key to the structure of Last Glacial ecosystems. PloS ONE 8: e61963 doi: 10.1371/journal.pone.0061963 PubMed DOI PMC

Agadjanian AK, Serdyuk NV (2005) The history of mammalian communities and paleogeography of the Altai Mountains in the Paleolithic. Paleontological Journal 39: 645–821.

Willis KJ, Rudner E, Sumegi P (2000) The full-glacial forests of central and southeastern Europe. Quaternary Research 53: 203–213.

Rodríguez J, Hortal J, Nieto M (2006) An evaluation of the influence of environment and biogeography on community structure: the case of Holarctic mammals. J Biogeogr 33: 291–303.

Fur SL, Fara E, Vignaud P (2011) Effect of simulated faunal impoverishment and mixture on the ecological structure of modern mammal faunas: Implications for the reconstruction of Mio-Pliocene African palaeoenvironments. Palaeogeogr Palaeoclimatol Palaeoecol 305: 295–309.

IUCN Red List Categories and Criteria version 3.1. Available: http://www.iucnredlist.org/technical-documents/categories-and-criteria/2001-categories-criteria. Accessed January 2012.

Shackleton NJ (1969) The last interglacial in the marine and terrestrial records. Proc Biol Sci 174: 135–154.

Williams DF, Thunell RC, Tappa E, Rio R, Raffi I (1988) Chronology of the Pleistocene isotope record 0-1.88 m.y. B.P. Palaeogeogr Palaeoclimatol Palaeoecol 64: 221–240.

Horáček I, Ložek V (1988) Palaeozoology and the Mid–European Quaternary past: scope of the approach and selected results. Rozpravy ČSAV, řada matematických a přírodních věd 98: 1–102.

Duff A., Lawson A (2004) Mammals of the World: A checklist. London: A & C Black. 312 p.

Wilson DE, Reeder D-AM (2005) Mammal species of the World. A taxonomic and geographic reference. Baltimore: Johns Hopkins University Press. 2142 p.

Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user‘s guide: software for ordination, version 5.0. (Ithaca, NY, Microcomputer Power).

Yudin BS, Galkina LI, Potapkina AF (1979) Mammal s of the Altai-Sayan mountainous part. Novosibirsk: Nauka. 296 p. (In Russian).

Hoffman MH, Meng S, Kosachev PA, Terechina TA, Silanteva MM (2011) Land snail faunas along an enviromental gradient in the Altai mountains (Russia). J Mollusan Stud 77: 76–86.

Wilson JS, Pitts JP (2010) Illuminating the lack of consensus among descriptions of earth history data in the North American deserts: a resource for biologists. Prog in Phys Geogr 34: 419–441.

Jankovská V, Chromý P, Nižnianská M (2002) ”Šafárka” - first palaeobotanical data on vegetation and landscape character of Upper Pleistocene in West Carpathians (North East Slovakia). Acta Palaeobot 42: 29–52.

Simakova AN (2006) The vegetation of the Russian Plains during the second part of the Late Pleistocene (33–18 ka). Quat Int 149: 110–114.

Hoffmann MH, Telyatnikov MYu, Ermakov N (2001) Phytogeographical analysis of plant communities along an altitudinal transect through the Kuraiskaya basin (Altai, Russia). Phytocoenologia 31: 401–426.

Dulamsuren C, Hauck M, Muhlenberg M (2005) Ground vegetation in the Mongolian taiga forest-steppe ecotone does not offer evidence for the human origin of grasslands. Applied Vegetation Science 8: 149–154.

Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. . Proc. R. Soc. B 277: 661–671. PubMed PMC

Zimov SA, Chuprynin VI, Oreshko AP, Chapin III FS, Reynolds JF, cet al (1995) Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am Nat 146: 765–794.

Boeskorov GG (2006) Arctic Siberia: refuge of the Mammoth fauna in the Holocene. Quat Int 142–143: 119–123.

Smith RL (1986) Elements of Ecology. Second Edition. Harper & Row Publishers 704 p.

Wells AG, Rachlow JL, Garton EO, Rice CG (2012) Mapping vegetation communities across home ranges of mountain goats in the North Cascades for conservation and management. Applied Vegetation Science 15: 560–570.

Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil record. Mamm Rev 36: 251–265.

Markova AK, Simakova AN, Puzachenko AYu (2009) Ecosystems of Eastern Europe at the time of maximum cooling of the Valdai glaciation (24–18 kyr BP) inferred from data on plant communities and mammal assemblages. Quat Int 201: 53–59.

Willis KJ, van Andel TH (2004) Trees or no trees? The enviroments of central and eastern Europe during the Last Glaciation. Quat Sci Rev 53: 203–213.

Faith JT (2011) Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North America. Quat Sci Rev 30: 13–14.

Alberdi MT, Caloi L, Dubrovo I, Palombo MR, Tsoukala E (1998) Large mammal faunal complexes and palaeoenviromental changes in the late Middle and Late Pleistocene: a preliminary comparison between the Eastern European and the Mediterranean areas. Geologija 25: 8–19.

Brugal J-P, Croitor R (2007) Evolutoin, ecology and biochronology of herbivore associations in Europe during the last 3 million years. Quaternaire 18: 129–151.

Meloro C, Clauss M (2012) Predator-prey biomass fluctuations in the Plio-Pleistocene. Palaios 27: 90–96.

Smidt S, Oswood MW (2002) Landscape patterns and stream reaches in the Alaskan taiga forest: potential roles of permafrost in differentiating macroinvertebrate communities. Hydrobiologia 468: 1–3.

McCain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecol Biogeogr 16: 1–13.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...