The evolution of paralogous enzymes MAT and MATX within the Euglenida and beyond
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24517416
PubMed Central
PMC3923989
DOI
10.1186/1471-2148-14-25
PII: 1471-2148-14-25
Knihovny.cz E-zdroje
- MeSH
- Chlorophyta enzymologie genetika fyziologie MeSH
- chloroplasty genetika MeSH
- Euglenida klasifikace enzymologie genetika fyziologie MeSH
- fylogeneze MeSH
- methioninadenosyltransferasa genetika MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- přenos genů horizontální MeSH
- protozoální proteiny genetika MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methioninadenosyltransferasa MeSH
- protozoální proteiny MeSH
BACKGROUND: Methionine adenosyltransferase (MAT) is a ubiquitous essential enzyme that, in eukaryotes, occurs in two relatively divergent paralogues: MAT and MATX. MATX has a punctate distribution across the tree of eukaryotes and, except for a few cases, is mutually exclusive with MAT. This phylogenetic pattern could have arisen by either differential loss of old paralogues or the spread of one of these paralogues by horizontal gene transfer. Our aim was to map the distribution of MAT/MATX genes within the Euglenida in order to more comprehensively characterize the evolutionary history of MATX. RESULTS: We generated 26 new sequences from 23 different lineages of euglenids and one prasinophyte alga Pyramimonas parkeae. MATX was present only in photoautotrophic euglenids. The mixotroph Rapaza viridis and the prasinophyte alga Pyramimonas parkeae, which harbors chloroplasts that are most closely related to the chloroplasts in photoautotrophic euglenids, both possessed only the MAT paralogue. We found both the MAT and MATX paralogues in two photoautotrophic species (Phacus orbicularis and Monomorphina pyrum). The significant conflict between eukaryotic phylogenies inferred from MATX and SSU rDNA data represents strong evidence that MATX paralogues have undergone horizontal gene transfer across the tree of eukaryotes. CONCLUSIONS: Our results suggest that MATX entered the euglenid lineage in a single horizontal gene transfer event that took place after the secondary endosymbiotic origin of the euglenid chloroplast. The origin of the MATX paralogue is unclear, and it cannot be excluded that it arose by a gene duplication event before the most recent common ancestor of eukaryotes.
Zobrazit více v PubMed
Cantoni GL. Biological methylation: selected aspects. Annu Rev Biochem. 1975;44:435–451. doi: 10.1146/annurev.bi.44.070175.002251. PubMed DOI
Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP. S-adenosylmethionine and methylation. FASEB J. 1996;10:471–480. PubMed
Takusagawa F, Kamitori S, Misaki S, Markham GD. Crystal structure of S-adenosylmethionine synthetase. J Biol Chem. 1996;271:136–147. doi: 10.1074/jbc.271.1.136. PubMed DOI
Graham DE, Bock CL, Schalk-Hihi C, Lu ZJ, Markham GD. Identification of a highly diverged class of S-adenosylmethionine synthetases in the archaea. J Biol Chem. 2000;275:4055–4059. doi: 10.1074/jbc.275.6.4055. PubMed DOI
Gonzalez B, Pajares MA, Hermoso JA, Alvarez L, Garrido F, Sufrin JR, Sanz- Aparicio J. The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site. J Mol Biol. 2000;300:363–375. doi: 10.1006/jmbi.2000.3858. PubMed DOI
Kotb M, Kredich NM. S-Adenosylmethionine synthetase from human lymphocytes purification and characterization. J Biol Chem. 1985;260:3923–3930. PubMed
Markham GD, Pajares MA. Structure – function relationships in methionine Adenosyltransferases. Cell Mol Life Sci. 2009;66:636–648. doi: 10.1007/s00018-008-8516-1. PubMed DOI PMC
Sanchez-Perez GF, Hampl V, Simpson AGB, Roger AJ. A new divergent type of eukaryotic methionine adenosyltransferase is present in multiple distantly related secondary algal lineages. J Eukaryot Microbiol. 2008;55:374–381. doi: 10.1111/j.1550-7408.2008.00349.x. PubMed DOI
Garrido F, Estrela S, Alves C, Sánchez-Pérez GF, Sillero A, Pajares MA. Refolding and characterization of methionine adenosyltransferase from Euglena gracilis. Protein Expr Purif. 2011;79:128–136. doi: 10.1016/j.pep.2011.05.004. PubMed DOI
Kamikawa R, Sanchez-Perez GF, Sako Y, Roger AJ, Inagaki Y. Expanded phylogenies of canonical and non-canonical types of methionine adenosyltransferase reveal a complex history of these gene families in eukaryotes. Mol Phylogenet Evol. 2009;53:565–570. doi: 10.1016/j.ympev.2009.06.016. PubMed DOI
Keeling PJ, Inagaki Y. A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1α. Proc Natl Acad Sci U S A. 2004;101:15380–15385. doi: 10.1073/pnas.0404505101. PubMed DOI PMC
Noble GP, Rogers MB, Keeling PJ. Complex distribution of EFL and EF-1α proteins in the green algal lineage. BMC Evol Biol. 2007;7:82. doi: 10.1186/1471-2148-7-82. PubMed DOI PMC
Kamikawa R, Inagaki Y, Sako Y. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene. Proc Natl Acad Sci U S A. 2008;105:6965–6969. doi: 10.1073/pnas.0711084105. PubMed DOI PMC
Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9:605–618. doi: 10.1038/nrg2386. PubMed DOI
Gile GH, Faktorova D, Castlejohn CA, Burger G, Lang BF, Farmer MA, Lukes J, Keeling PJ. Distribution and phylogeny of EFL and EF-1α in Euglenozoa suggest ancestral co-occurrence followed by differential loss. PLoS One. 2009;4:e5162. doi: 10.1371/journal.pone.0005162. PubMed DOI PMC
Kamikawa R, Yabuki A, Nakayama T, Ishida K, Hashimota T, Inagaki Y. Cercozoa comprises both EF-1α-containing and EFL-containing members. Eur J Protistol. 2011;47:24–28. doi: 10.1016/j.ejop.2010.08.002. PubMed DOI
Ishitani Y, Kamikawa R, Yabuki A, Tsuchiya M, Inagaki Y, Takishita K. Evolution of elongation factor-like (EFL) protein in Rhizaria is revised by radiolarian EFL gene sequences. J Eukaryot Microbiol. 2012;59:367–373. doi: 10.1111/j.1550-7408.2012.00626.x. PubMed DOI
Szabova J, Ruzicka P, Verner Z, Hampl V, Lukes J. Experimental examination of EFL and MATX eukaryotic horizontal gene transfers: coexistence of mutually exclusive transcripts predates functional rescue. Mol Biol Evol. 2011;28:2371–2378. doi: 10.1093/molbev/msr060. PubMed DOI
Leander BS, Esson HJ, Breglia SA. Macroevolution of complex cytoskeletal systems in euglenids. Bioessays. 2007;29:987–1000. doi: 10.1002/bies.20645. PubMed DOI
Yamaguchi A, Yubuki N, Leander BS. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida) BMC Evol Biol. 2012;12:29. doi: 10.1186/1471-2148-12-29. PubMed DOI PMC
Leander BS. Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 2004;12:251–258. doi: 10.1016/j.tim.2004.04.001. PubMed DOI
Takahashi F, Okabe Y, Nakada T. Origins of the secondary plastids of euglenophyta and chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO. J Phycol. 2007;43:1302–1309. doi: 10.1111/j.1529-8817.2007.00411.x. DOI
Gile GH, Novis PM, Cragg DS, Zuccarello GC, Keeling PJ. The distribution of Elongation Factor-1 Alpha (EF-1alpha), Elongation Factor-Like (EFL), and a non-canonical genetic code in the ulvophyceae: discrete genetic characters support a consistent phylogenetic framework. J Eukaryot Microbiol. 2009;56:367–72. doi: 10.1111/j.1550-7408.2009.00411.x. PubMed DOI
Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotes 16S like ribosomal RNA coding regions. Gene. 1988;71:491–499. doi: 10.1016/0378-1119(88)90066-2. PubMed DOI
Müllner AN, Angeler DG, Samuel R, Linton EW, Triemer RE. Phylogenetic analysis of phagotrophic, photomorphic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int J Syst Evol Microbiol. 2001;51:783–791. doi: 10.1099/00207713-51-3-783. PubMed DOI
Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE. 2012;7:e30619. doi: 10.1371/journal.pone.0030619. PubMed DOI PMC
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res. 1997;24:4876–4882. PubMed PMC
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. 2009;537:39–64. doi: 10.1007/978-1-59745-251-9_3. PubMed DOI
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–98.
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21:2104–2105. doi: 10.1093/bioinformatics/bti263. PubMed DOI
Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol. 1989;29:170–179. doi: 10.1007/BF02100115. PubMed DOI
Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999;16:1114–1116. doi: 10.1093/oxfordjournals.molbev.a026201. DOI
Shimodaira H, Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 2001;17:1246–1247. doi: 10.1093/bioinformatics/17.12.1246. PubMed DOI
Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002;51:492–508. doi: 10.1080/10635150290069913. PubMed DOI
Schmidt HA, Strimmer K, Vingron M, Von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002;18:502–504. doi: 10.1093/bioinformatics/18.3.502. PubMed DOI