Effects of subchronic exposure of diclofenac on growth, histopathological changes, and oxidative stress in zebrafish (Danio rerio)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24688414
PubMed Central
PMC3933404
DOI
10.1155/2014/645737
Knihovny.cz E-zdroje
- MeSH
- chemické látky znečišťující vodu toxicita MeSH
- dánio pruhované anatomie a histologie růst a vývoj metabolismus MeSH
- diklofenak toxicita MeSH
- oxidační stres účinky léků MeSH
- velikost těla účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- diklofenak MeSH
The aim of this study was to investigate effects of subchronic exposure to sublethal levels of diclofenac on growth, oxidative stress, and histopathological changes in Danio rerio. The juvenile growth tests were performed on Danio rerio according to OECD method number 215. Fish at the age of 20 days were exposed to the diclofenac environmental concentration commonly detected in the Czech rivers (0.02 mg L(-1)) and the range of sublethal concentrations of diclofenac (5, 15, 30, and 60 mg L(-1)) for 28 days. A significant decrease (P < 0.01) in the fish growth caused by diclofenac was observed in the concentrations of 30 and 60 mg L(-1). The identified value of LOEC (lowest observed effect concentration) was 15 mg L(-1) of diclofenac and NOEC (no observed effect concentration) value was 5 mg L(-1) of diclofenac. We did not find histopathological changes and changes of selected parameters of oxidative stress (glutathione S-transferase, glutathione reductase) in tested fish. The environmental concentration of diclofenac in Czech rivers did not have any effect on growth, selected oxidative stress parameters (glutathione S-transferase, glutathione reductase), or histopathological changes in Danio rerio but it could have an influence on lipid peroxidation.
Zobrazit více v PubMed
Buser H-R, Poiger T, Müller MD. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environmental Science and Technology. 1998;32(22):3449–3456.
Ternes TA. Vorkommen Von Pharmaka in Gewässern. Wasser & Boden; 2001.
Bendz D, Paxeus NA, Ginn TR, Loge FJ. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden. Journal of Hazardous Materials. 2005;122(3):195–204. PubMed
Kim K-R, Owens G, Kwon S-I, So K-H, Lee D-B, Ok YS. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution. 2011;214(1–4):163–174.
Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters. 2002;131(1-2):5–17. PubMed
Heberer T, Dünnbier U, Reilich C, Stan H-J. Detection of drugs and drug metabolites in ground water samples of a drinking water treatment plant. Fresenius Environmental Bulletin. 1997;6(7-8):438–443.
Sacher F, Lange FT, Brauch H-J, Blankenhorn I. Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. Journal of Chromatography A. 2001;938(1-2):199–210. PubMed
Heberer T, Fuhrmann B, Schmidt-Bäumler K, Tsipi D, Koutsouba V, Hiskia A. Occurrence of pharmaceutical residues in sewage, river, ground and drinking water in Greece and Germany. In: Daughton CG, Jones-Lepp T, editors. Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues. Washington, DC, USA: American Chemical Society; 2001. pp. 70–83.
Hallare AV, Köhler H-R, Triebskorn R. Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere. 2004;56(7):659–666. PubMed
van den Brandhof E-J, Montforts M. Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicology and Environmental Safety. 2010;73(8):1862–1866. PubMed
Praskova E, Voslarova E, Siroka Z, et al. Assessment of diclofenac LC50 reference values in juvenile and embryonic stages of the zebrafish (Danio rerio) Polish Journal of Veterinary Sciences. 2011;14(4):545–549. PubMed
OECD (Organization of Economic Cooperation and Development) Fish, Juvenile Growth Test. Test Guideline 215. OECD Guidelines for the Testing of Chemicals. 2000.
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. First enzymatic step in mercapturic acid formation. Journal of Biological Chemistry. 1974;249(22):7130–7139. PubMed
Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry. 1975;250(14):5475–5480. PubMed
Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. International Journal of Biochemistry and Cell Biology. 2005;37(6):1319–1330. PubMed
Rice-Evans CA, Diplock AT, Symins MCR. Techniques in free radical research. In: Burton RH, Knippenberg PH, editors. Laboratory Techniques in Biochemistry and Molecular Biology. Amsterdam, The Netherlands: Elsevier; 1991. pp. 147–149.
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1997;95(2):351–358. PubMed
Lee J, Ji K, Lim Kho Y, Kim P, Choi K. Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotoxicology and Environmental Safety. 2011;74(5):1216–1225. PubMed
Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology. 2004;68(2):141–150. PubMed
Revai T, Harmos G. Nephrotic syndrome and acute interstitial nephritis associated with the use of diclofenac. Wiener Klinische Wochenschrift. 1999;111(13):523–524. PubMed
Mehinto AC, Hill EM, Tyler CR. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss) Environmental Science and Technology. 2010;44(6):2176–2182. PubMed
Cuklev F, Kristiansson E, Fick J, Asker N, Forlin L, Larsson DGJ. Diclofenac in fish: blood plasma levels similar to human therapeutic levels affect global hepatic gene expression. Environmental Toxicology and Chemistry. 2011;30(9):2126–2134. PubMed
Feito R, Valcarcel Y, Catalá M. Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study. Ecotoxicology. 2012;21(1):289–296. PubMed
Petersen A, Zetterberg M, Sjostrand J, Palsson AZ, Karlsson J-O. Potential protective effects of NSAIDs/ASA in oxidatively stressed human lens epithelial cells and intact mouse lenses in culture. Ophthalmic Research. 2005;37(6):318–327. PubMed