Dynamical tangles in third-order oscillator with single jump function
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25544951
PubMed Central
PMC4269091
DOI
10.1155/2014/239407
Knihovny.cz E-zdroje
- MeSH
- teoretické modely * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.
Zobrazit více v PubMed
Sprott J. C. Chaos and Time-series Analysis. Oxford, UK: Oxford University Press; 2003.
Hentschel H. G. E., Procaccia I. The infinite number of generalized dimensions of fractals and strange attractors. Physica D: Nonlinear Phenomena. 1983;8(3):435–444. doi: 10.1016/0167-2789(83)90235-X. DOI
Gans R. F. When is cutting chaotic? Journal of Sound and Vibration. 1995;188(1):75–83. doi: 10.1006/jsvi.1995.0579. DOI
Silva C. P. Shil'nikov's theorem—a tutorial. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1993;40(10):675–682. doi: 10.1109/81.246142. DOI
Chua L. O., Komuro M., Matsumoto T. The double scroll family. I. Rigorous proof of chaos. IEEE Transactions on Circuits and Systems. 1986;33(11):1072–1097. doi: 10.1109/TCS.1986.1085869. DOI
Spany V., Galajda P., Guzan M., Pivka L., Olej{\'a}r M. Chua's singularities: great miracle in circuit theory. International Journal of Bifurcation and Chaos. 2010;20(10):2993–3006. doi: 10.1142/S0218127410027544. DOI
Piper J. R., Sprott J. C. Simple autonomous chaotic circuits. IEEE Transactions on Circuits and Systems II: Express Briefs. 2010;57(9):730–734. doi: 10.1109/TCSII.2010.2058493. DOI
Kapitaniak T. Chaotic Oscillators. World Scientific; 1992. DOI
Wu C. W., Chua L. O. On linear topological conjugacy of Lur'e systems. IEEE Transactions on Circuits and Systems. I. Fundamental Theory and Applications. 1996;43(2):158–161. doi: 10.1109/81.486439. DOI
Pospisil J., Brzobohaty J., Kolka Z., Horska J. New canonical state models of Chua's circuit family. Radioengineering. 1999;8:1–5.
Sprott J. C. Simple chaotic systems and circuits. American Journal of Physics. 2000;68(8):758–763. doi: 10.1119/1.19538. DOI
Sprott J. C. Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific; 2010. DOI
Sprott J. C. A new class of chaotic circuit. Physics Letters A. 2000;266(1):19–23. doi: 10.1016/S0375-9601(00)00026-8. DOI
Kocarev L. M., Stojanovski T. D. Linear conjugacy of vector fields in Lur'e form. IEEE Transactions on Circuits and Systems. I. Fundamental Theory and Applications. 1996;43(9):782–785. doi: 10.1109/81.536748. DOI
Petrzela J. Three-segment piecewise-linear vector fields with orthogonal eigenspaces. Acta Electrotechnica et Informatica. 2009;9:44–50.
Feldmann U., Schwarz W. Linear conjugacy of n-dimensional piecewise linear systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1994;41(2):190–192. doi: 10.1109/81.269062. DOI
Pospisil J., Kolka Z., Horska J., Brzobohaty J. Simplest ODE equivalents of Chua's equations. International Journal of Bifurcation and Chaos. 2000;10(1):1–23. doi: 10.1142/S0218127400000025. DOI
Mees A. I., Chapman P. B. Homoclinic and heteroclinic orbits in the double scroll attractor. IEEE Transactions on Circuits and Systems. 1987;34(9):1115–1120. doi: 10.1109/TCS.1987.1086251. DOI
Petrzela J. On the strategic orbits in third-order oscillator with jump nonlinearity. International Journal of Algebra. 2010;4(1–4):197–207.
Medrano T. R. O., Baptista M. S., Caldas I. L. Homoclinic orbits in a piecewise system and their relation with invariant sets. Physica D: Nonlinear Phenomena. 2003;186(3-4):133–147. doi: 10.1016/j.physd.2003.08.002. DOI
Zhou T., Chen G., Yang Q. Constructing a new chaotic system based on the Shilnikov criterion. Chaos, Solitons & Fractals. 2004;19(4):985–993. doi: 10.1016/S0960-0779(03)00251-0. DOI
Grygiel K., Szlachetka P. Lyapunov exponents analysis of autonomous and nonautonomous sets of ordinary differential equations. Acta Physica Polonica B. 1995;26(8):1321–1331.
Petržela J., Hruboš Z., Gotthans T. Modeling deterministic chaos using electronic circuits. Radioengineering. 2011;20(2):438–444.
Petrzela J., Kolka Z., Hanus S. Simple chaotic oscillator: from mathematical model to practical experiment. Radioengineering. 2006;15:6–11.
Gotthans T., Petrzela J., Hrubos Z., Baudoin G. Parallel particle swarm optimization on chaotic solutions of dynamical systems. Proceedings of the 22nd International Conference on Radioelektronika (RADIOELEKTRONIKA '12); 2012; pp. 1–4.
Brown R. Generalizations of the Chua equations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1993;40(11):878–884. doi: 10.1109/81.251831. DOI
Grantham W. J., Lee B. A chaotic limit cycle paradox. Dynamics and Control. 1993;3(2):159–173. doi: 10.1007/BF01968529. DOI
Itoh M. Synthesis of electronic circuits for simulating nonlinear dynamics. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 2001;11(3):605–653. doi: 10.1142/S0218127401002341. DOI
Elwakil A. S., Kennedy M. P. Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Transactions on Circuits and Systems. I. Fundamental Theory and Applications. 2001;48(3):289–307. doi: 10.1109/81.915386. DOI
Elhadj Z., Sprott J. C. Some open problems in chaos theory and dynamics. International Journal of Open Problems in Computer Science and Mathematics. 2011;4(2):1–10.
Zeraoulia E. Models and Applications of Chaos Theory in Modern Sciences. New York, NY, USA: CRC Press; 2011.
Gotthans T., Hruboš Z. Multi grid chaotic attractors with discrete Jumps. Journal of Electrical Engineering. 2013;64(2):118–122. doi: 10.2478/jee-2013-0017. DOI