Complementary sex determination in the parasitic wasp Diachasmimorpha longicaudata
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25789748
PubMed Central
PMC4366257
DOI
10.1371/journal.pone.0119619
PII: PONE-D-14-10314
Knihovny.cz E-resources
- MeSH
- Alleles MeSH
- Biological Evolution * MeSH
- Diploidy MeSH
- Haploidy MeSH
- Sex Ratio MeSH
- Sex Determination Processes genetics MeSH
- Wasps genetics physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We studied the sex determination in Diachasmimorpha longicaudata, a parasitoid braconid wasp widely used as biological control agent of fruit pest tephritid flies. We tested the complementary sex determination hypothesis (CSD) known in at least 60 species of Hymenoptera. According to CSD, male or female development depends on the allelic composition of one sex locus (single-locus CSD) or multiple sex loci (multiple-locus CSD). Hemizygote individuals are normal haploid males, and heterozygotes for at least one sex locus are normal diploid females, but homozygotes for all the sex loci are diploid males. In order to force the occurrence of diploid males in D. longicaudata, we established highly inbred lines and examined their offspring using chromosome counting, flow cytometry, and sex ratio analysis. We found that when mother-son crosses were studied, this wasp produced about 20% of diploid males out of the total male progeny. Our results suggest that this parasitoid may represent the second genus with multiple-locus CSD in Hymenoptera. Knowledge about the sex determination system in D. longicaudata is relevant for the improvement of mass rearing protocols of this species. This information also provides the necessary background for further investigations on the underlying molecular mechanisms of sex determination in this species, and a better insight into the evolution of this pathway in Hymenoptera in particular and insects in general.
Department of Botany University of South Bohemia Ceske Budejovice Czech Republic
Instituto de Ecología y Desarrollo Sustentable Universidad Nacional de Luján Luján Argentina
See more in PubMed
Sánchez L. Sex-determining mechanisms in insects. Int J Dev Biol. 2008;52: 837–856. 10.1387/ijdb.072396ls PubMed DOI
Leather SR, Hardie J. Insect reproduction. Boca Raton: CRC Press; 1995.
Heimpel GE, de Boer JG. Sex determination in the Hymenoptera. Annu Rev Entomol. 2008;53: 209–230. PubMed
van Wilgenburg E, Diressen G, Beukeboom LW. Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Front Zool. 2006;3: 1–15. PubMed PMC
Cook JM. Sex determination in the Hymenoptera: a review of models and evidence. Heredity. 1993;71: 421–435.
Harpur BA, Sobhani M, Zayed A. A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entomol Exp Appl. 2012;146: 156–164.
de Boer JG, Ode PJ, Rendahl AK, Vet LEM, Whitfield JB, Heimpel GE. Experimental support for multiple locus complementary sex determination in the parasitoid Cotesia vestalis . Genetics. 2008;180: 1525–1535. 10.1534/genetics.107.083907 PubMed DOI PMC
Liebert AE, Johnson RN, Switz GT, Starks PT. Triploid females and diploid males: underreported phenomena in Polistes wasps? Insectes Soc. 2004;51: 205–211.
Beukeboom LW. Sex determination in Hymenoptera: a need for genetic and molecular studies. BioEssays. 1995;17: 813–817. PubMed
Cunha AB, Kerr WE. A genetical theory to explain sex determination by arrhenotokous parthenogenesis. Forma et Functio. 1957;4: 33–36.
Dobson SL, Tanouye MA. Interspecific movement of the paternal sex ratio chromosome. Heredity. 1998;81: 261–269. PubMed
Beukeboom LW, Kamping A, van de Zande L. Sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea): A critical consideration of models and evidence. Semin Cell Dev Biol. 2007;18: 371–378. PubMed
Snell GD. The determination of sex in Habrobracon . Proc Natl Acad Sci USA. 1935;21: 446–453. PubMed PMC
Whiting PW. Sex determination and reproductive economy in Habrobracon . Genetics. 1939;28: 365–382. PubMed PMC
Whiting PW. Multiple alleles in complementary sex determination of Habrobracon . Genetics. 1943;28: 365–382. PubMed PMC
Crozier RH. Heterozygosity and sex determination in haplodiploidy. Am Nat. 1971;105: 399–412.
Crozier RH. Evolutionary genetics of the Hymenoptera. Annu Rev Entomol. 1977;22: 263–288.
Beukeboom LW, Ellers J, van Alphen JJM. Absence of single-locus complementary sex determination in the braconid wasps Asobara tabida and Alysia manducator . Heredity. 2000;84: 29–36. PubMed
Salin C, Deprez B, Van Bockstaele DR, Mahillon J, Hance T. Sex determination mechanism in the hymenopteran parasitoid Aphidius rhopalosiphi De Stefani-Peres (Braconidae: Aphidiinae). Belg J Zool. 2004;134: 15–21.
Cook JM, Crozier RH. Sex determination and population biology in the Hymenoptera. Trends Ecol Evol. 1995;10: 281–286. PubMed
Asplen MK, Whitfield JB, de Boer JG, Heimpel GE. Ancestral state reconstruction analysis of hymenopteran sex determination mechanisms. J Evol Biol. 2009;22: 1762–1769. 10.1111/j.1420-9101.2009.01774.x PubMed DOI
Sivinski JM. The past and potential of biological control of fruit flies In: McPheron BA, Steck GJ, editors. Fruit fly pests: A world assessment of their biology and management. Del Ray Beach: St. Lucie Press; 1996. Pp. 369–375.
Montoya P, Liedo P, Benrey B, Barrera JF, Cancino J, Aluja M. Functional response and superparasitism by Diachasmimorpha longicaudata (Hymenoptera: Braconidae), a parasitoid of fruit flies (Diptera: Tephritidae). Ann Entomol Soc Am. 2000;93: 47–54.
Cancino JL. Procedimientos y fundamentos de la cría masiva de Diachasmimorpha longicaudata (Ashmead) parasitoide de moscas de la fruta. XII Curso Internacional sobre Moscas de la Fruta, Metapa de Domínguez, Chiapas, México. 1998.
Viscarret MM, La Rossa R, Segura DF, Ovruski SM, Cladera JL. Evaluation of the parasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) reared on a genetic sexing strain of Ceratitis capitata (Wied.) (Diptera: Tephritidae). Biol Control. 2006;36: 147–153.
Terán HR. Comportamiento alimentario y su correlación a la reproducción en hembras de Ceratitis capitata (Wied.) (Diptera, Trypetidae). Revta Agron N O Argent. 1977;14: 17–34.
Carabajal Paladino LZ, Papeschi AG, Cladera JL. Immature stages of development in the parasitoid wasp Diachasmimorpha longicaudata . J Insect Sci. 2010;1056 10.1673/031.010.1001 PubMed DOI PMC
Traut W. Pachytene mapping in the female silkworm Bombyx mori L. (Lepidoptera). Chromosoma. 1976;58: 275–284. PubMed
Bressa MJ, Papeschi AG, Vítková M, Kubíčková S, Fuková I, Pigozzi MI, et al. Sex chromosome evolution in cotton stainers of the genus Dysdercus (Heteroptera: Pyrrhocoridae). Cytogenet Genome Res. 2009;125: 292–305. 10.1159/000235936 PubMed DOI
Kitthawee S, Singhapong S, Baimai V. Metaphase chromosomes of parasitic wasp, Diachasmimorpha longicaudata (Hymenoptera: Braconidae) in Thailand. Cytologia. 1999;64: 111–115.
Carabajal Paladino LZ, Papeschi A, Lanzavecchia S, Cladera J, Bressa MJ. Cytogenetic characterization of Diachasmimorpha longicaudata (Hymenoptera: Braconidae), a parasitoid wasp used as a biological control agent. Eur J Entomol. 2013;110: 401–409.
Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol. 1990;33: 105–110. PubMed
JMicroVision. Image analysis toolbox for measuring and quantifying components of high-definition images. Roduit, N. Version 1.2.2. http://www.jmicrovision.com. 2012.
R Core Team. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN 3–900051–07–0, URL http://www.R-project.org/. 2012.
de Boer JG, Kuijper B, Heimpel GE, Beukeboom LW. Sex determination meltdown upon biological control introduction of the parasitoid Cotesia rubecula? Evol Appl. 2012;5: 444–454. 10.1111/j.1752-4571.2012.00270.x PubMed DOI PMC
Ruf D, Dorn S, Mazzi D. Unexpectedly low frequencies of diploid males in an inbreeding parasitoid with complementary sex determination. Biol J Linn Soc Lond. 2013;108: 79–86.
Antolin MF, Strand MR. Mating system of Bracon hebetor (Hymenoptera: Braconidae). Ecol Entomol. 1992;17: 1–7.
Hein S, Poethke H- J, Dorn S. What stops the ‘diploid male vortex’?—A simulation study for species with single locus complementary sex determination. Ecol Modell. 2009;220: 1663–1669.
Beye M, Hunt GJ, Page RE, Fondrk MK, Grohmann L, Moritz RF. Unusually high recombination rate detected in the sex locus region of the honey bee (Apis mellifera). Genetics. 1999;153: 1701–1708. PubMed PMC
Charlesworth B, Betancourt AJ, Kaiser VB, Gordo I. Genetic recombination and molecular evolution. Cold Spring Harb Symp Quant Biol. 2009;74: 177–186. 10.1101/sqb.2009.74.015 PubMed DOI
Sirvio A, Johnston JS, Wenseleers T, Pamilo P. A high recombination rate in eusocial Hymenoptera: evidence from the common wasp Vespula vulgaris . BMC Genetics. 2011;12: 95 10.1186/1471-2156-12-95 PubMed DOI PMC
Tregenza T, Wedell N. Polyandrous females avoid costs of inbreeding. Nature. 2002;415: 71–73. PubMed
Bretman A, Newcombe D, Tregenza T. Promiscuous females avoid inbreeding by controlling sperm storage. Mol Ecol. 2009;18: 3340–3345. 10.1111/j.1365-294X.2009.04301.x PubMed DOI
Rueppell O, Meier S, Deutsch R. Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures. PLoS One. 2012;7: e47220 10.1371/journal.pone.0047220 PubMed DOI PMC
Ode PJ, Antolin MF, Strand MR. Brood-mate avoidance in the parasitic wasp Bracon hebetor Say. Anim Behav. 1995;49: 1239–1248.
Whitehorn PR, Tinsley MC, Goulson D. Kin recognition and inbreeding reluctance in bumblebees. Apidologie. 2009;40: 627–633.
Zeh JA, Zeh DW. The evolution of polyandry II: post-copulatory defences against genetic incompatibility. Proc Biol Sci. 1997;264: 69–75.
Tregenza T, Wedell N. Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol. 2000;9: 1013–1027. PubMed
Simmons LW. The evolution of polyandry: sperm competition, sperm selection, and offspring viability. Annu Rev Ecol Evol Syst. 2005;36: 125–146.
Paxton RJ, Thorén PA, Gyllenstrand N, Tengö J. Microsatellite DNA analysis reveals low diploid male production in a communal bee with inbreeding. Biol J Linn Soc Lond. 2000;69: 483–502.
Carabajal Paladino LZ, Cladera JL, Papeschi AG, Bressa MJ. La espermatogénesis de Diachasmimorpha longicaudata (Hymenoptera, Braconidae). XL Congreso Argentino de Genética, III Simposio Latinoamericano de Citogenética y Evolución, I Jornadas Regionales SAG-NEA. 2011.
Cowan DP, Stahlhut JK. Functionally reproductive diploid and haploid males in an inbreeding hymenopteran with complementary sex determination. Proc Natl Acad Sci USA. 2004;101: 10374–10379. PubMed PMC
Stouthamer R, Luck RF, Werren JH. Genetics of sex determination and the improvement of biological control using parasitoids. Environ Entomol. 1992;21: 427–435.
Zayed A. Effective population size in Hymenoptera with complementary sex determination. Heredity. 2004;93: 627–630. PubMed
Zayed A, Packer L. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci USA. 2005;102: 10742–10746. PubMed PMC
Elias J, Mazzi D, Dorn S. No need to discriminate? Reproductive diploid males in a parasitoid with complementary sex determination. PLoS One. 2009;4: e6024 10.1371/journal.pone.0006024 PubMed DOI PMC
Elias J, Dorn S, Mazzi D. Inbreeding in a natural population of the gregarious parasitoid wasp Cotesia glomerata . Mol Ecol. 2010;19: 2336–2345. 10.1111/j.1365-294X.2010.04645.x PubMed DOI
Elias J, Dorn S, Mazzi D. No evidence for increased extinction proneness with decreasing effective population size in a parasitoid with complementary sex determination and fertile diploid males. BMC Evol Biol. 2010;10: 366 10.1186/1471-2148-10-366 PubMed DOI PMC
Gokhman VE. Karyotypes of the parasitic Hymenoptera. London: Springer; 2009.
Dowton M, Belshaw R, Austin AD, Quicke DLJ. Simultaneous molecular and morphological analysis of braconid relationships (Insecta: Hymenoptera: Braconidae) indicates independent mt-tRNA gene inversions within a single wasp family. J Mol Evol. 2002;54: 210–226. PubMed
Wu Z, Hopper KR, Ode PJ, Fuester RW, Tuda M, Heimpel GE. Single-locus complementary sex determination absent in Heterospilus prosopidis (Hymenoptera: Braconidae). Heredity. 2005;95: 228–234. PubMed
Speicher BR, Speicher KG. The occurrence of diploid males in Habrobracon brevicornis . Am Nat. 1940;74: 379–382.
Whiting PW, Whiting AR. Diploid males from fertilized eggs in Hymenoptera. Science. 1925;62: 437–438. PubMed
Holloway AK, Heimpel GE, Strand MR, Antolin MF. Survival of diploid males in Bracon sp. near hebetor (Hymenoptera: Braconidae). Ann Entomol Soc Am. 1999;92: 110–116.
Bostian CH. Biparental males in hatchability of eggs in Habrobracon . Genetics. 1934;180: 280–285. PubMed PMC
Clark AM, Bertrand HA, Smith RE. Life span differences between haploid and diploid males of Habrobracon serinopae after exposure as adults to X rays. Am Nat. 1963;97: 203–208.
Ma WJ, Kuijper B, de Boer JG, van de Zande L, Beukeboom LW, Wertheim B, et al. Absence of complementary sex determination in the parasitoid wasp genus Asobara (Hymenoptera: Braconidae). PLoS One. 2013;8: e60459 10.1371/journal.pone.0060459 PubMed DOI PMC
Niyigibira EI, Overholt WA, Stouthamer R. Cotesia flavipes Cameron and Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) do not exhibit complementary sex determination: Evidence from field populations. Appl Entomol Zool. 2004;39: 705–715.
Gu H, Dorn S. Mating system and sex allocation in the gregarious parasitoid Cotesia glomerata . Anim Behav. 2003;66: 259–264.
de Boer JG, Ode PJ, Vet LEM, Whitfield JB, Heimpel GE. Diploid males sire triploid daughters and sons in the parasitoid wasp Cotesia vestalis . Heredity. 2007;99: 288–294. PubMed
Li Y, Steiner WWM. Genetic characterization of a black abdomen mutant in Microplitis croceipes (Hymenoptera, Braconidae). J Hered. 1992;83: 448–451.