Reconfigurable Boolean logic using magnetic single-electron transistors
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25923789
PubMed Central
PMC4414357
DOI
10.1371/journal.pone.0125142
PII: PONE-D-15-01864
Knihovny.cz E-resources
- MeSH
- Transistors, Electronic * MeSH
- Magnetic Fields * MeSH
- Models, Theoretical * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.
Cavendsih Laboratory University of Cambridge Cambridge United Kingdom
Hitachi Cambridge Laboratory Cambridge CB3 0HE United Kingdom
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD United Kingdom
See more in PubMed
Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 2008;453: 80–83. 10.1038/nature06932 PubMed DOI
Joo S, Kim T, Shin SH, Lim JY, Hong J, Song JD, et al. Magnetic-field-controlled reconfigurable semiconductor logic. Nature. 2013;494: 72–76. 10.1038/nature11817 PubMed DOI
Heinzig A, Slesazeck S, Kreupl F, Mikolajick T, Weber WM. Reconfigurable silicon nanowire transistors. Nano Letters. 2012;12: 119–124. 10.1021/nl203094h PubMed DOI
Yu WJ, Kim UJ, Kang BR, Lee IH, Lee EH, Hee Y, et al. Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Letters. 2009;9: 1401–1405. 10.1021/nl803066v PubMed DOI
Mol JA, Verduijn J, Levine RD, Remacle F, Rogge S. Integrated logic circuits using single-atom transistors PNAS 2011;108: 13969–13972. PubMed PMC
Kastner MA. The single-electron transistor. Rev Mod Phys. 1992;64: 849–858. 10.1103/RevModPhys.64.849 DOI
Gonzalez-Zalba MF, Heiss D, Podd G, Ferguon AJ. App Phys Lett. 2012;101: 103504 10.1063/1.4750251 DOI
Zhu C, Gu Z, Shang L, Dick RP, Knobel RG. Towards an ultra-low-power architecture using single-electron tunneling transistors. Proceedings of the 44th annual Design Automation Conference. 2007; 312.
Ono K, Shimada H, Ootuka Y. Enhanced magnetic valve effect and magneto-Coulomb oscillations in ferromagnetic single electron transistors. J Phys Soc Japan. 1997;66: 1261 10.1143/JPSJ.66.1261 DOI
Barnas J, Martinek J, Michalek G, Bulka B R, Fert A. Spin effects in ferromagnetic single-electron transistors. Phys Rev B. 2000;62: 12363 10.1103/PhysRevB.62.12363 DOI
Shirakashi J, Takemura Y. Ferromagnetic single-electron transistor with multiple tunnel junctions. J Mag Soc Japan. 2001;25: 783 10.3379/jmsjmag.25.783 DOI
Jalil MBA, Tan SG, Ma MJ. Enhanced magneto-Coulomb effect in asymmetric ferromagnetic single electron transistors. J App Phys. 2009;105: 07C905 10.1063/1.3055271 DOI
Takiguchi M, Shimada H, Mizugaki Y. Correlation between polarity of magnetoresistance ratio and tunnel resistance in ferromagnetic single-electron transistor with superconductive island. J J App Phys. 2014;53: 043101 10.7567/JJAP.53.043101 DOI
Kirchner S, Si Q. Quantum criticality out of equilibrium: Steady state in a magnetic single-electron transistor. Phys Rev Lett. 2009;103: 206401 10.1103/PhysRevLett.103.206401 PubMed DOI
Tucker JR. Complementary digital logic based on Coulomb blockade. J App Phys. 1992;72: 4399–4413. 10.1063/1.352206 DOI
Ishikuro H, Hiramoto T. Influence of quantum confinement effects on single electron and single hole transistors. In: Electron Devices Meeting, 1998. IEDM ’98. Technical Digest., International. 1998; 119–122.
Uchida K, Koga J, Ohba R, Toriumi A. Programmable single-electron transistor logic for low-power intelligent Si LSI. In: Solid-State Circuits Conference, 2002. Digest of Technical Papers. ISSCC. 2002 IEEE International. 2002;1: 206–460.
Wunderlich J, Jungwirth T, Irvine AC, Kaestner B, Shick AB, Campion RP, et al. Coulomb blockade anisotropic magnetoresistance and voltage controlled magnetic switching in a ferromagnetic GaMnAs single electron transistor. J Magn Magn Mater. 2007;310: 1883–1888. 10.1016/j.jmmm.2006.10.676 DOI
Dery H, Dalal P, Cywinski L, Sham LJ. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature. 2007;447: 573–576. 10.1038/nature05833 PubMed DOI
Hai PN, Sugahara S, Tanaka M. Reconfigurable logic gates using single-electron spin transistors. Japn J Appl Phys. 2007;46: 6579–6585. 10.1143/JJAP.46.6579 DOI
Wunderlich J, Jungwirth T, Kaestner B, Irvine AC, Shick AB, Stone N, et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys Rev Lett. 2006;97: 077201 10.1103/PhysRevLett.97.077201 PubMed DOI
Ciccarelli C, Zarbo LP, Irvine AC, Campion RP, Gallagher BL, Wunderlich J, et al. Spin gating electrical current. App Phys Lett. 2012;101: 122411–122414. 10.1063/1.4752013 DOI
Beenakker CWJ. Theory of coulomb-blockade oscillations in the conductance of a quantum dot. Phys Rev B. 1991;44: 1646–1656. 10.1103/PhysRevB.44.1646 PubMed DOI
In-plane rotations between [110] and [1–10] directions were explored leading to Δμ = 46 μeV insufficient for complementary operation.
Klein M, Lansbergen GP, Mol JA, Rogge S, Levine RD, Remacle F. Reconfigurable logic devices on a single dopant atom-operation up to a full adder by using electrical spectroscopy. ChemPhysChem 2009;10: 162–173. 10.1002/cphc.200800568 PubMed DOI
Wang H, Hsu A, Wu J, Kong J, Palacios T. (2010) Graphene-based ambipolar RF mixers. IEEE Elec Dev Lett. 2010;31: 906 10.1109/LED.2010.2052017 DOI
Mizuno Y, Ohya S, Hai PN, Tanaka M. Spin-dependent transport properties in GaMnAs-based spin hot-carrier transistors. Appl Phys Lett. 2007;90: 62505/1–3 10.1063/1.2724771 DOI
Betz AC, Barraud S, Wilmart Q, Placais B, Jehl X, Sanquer M, et al. High frequency characterisation of thermionic charge transport in silicon-on-insulator nanowire transistors. App Phys Lett 2014;104: 043106 10.1063/1.4863538 DOI